Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trudeau Institute reports new approach to treating Listeria infections

18.10.2011
Strategy could lead to new treatments for sepsis

Research underway at the Trudeau Institute could lead to new treatments for people sickened by Listeria and other sepsis-causing bacteria. Dr. Stephen Smiley's laboratory has published a study in the scientific journal Infection and Immunity that supports a new approach to treating these infections.

Listeria can cause serious illness, especially among the elderly, the very young and those with compromised immune systems. The bacteria can also cause significant complications in pregnant women, including miscarriage.

The CDC is reporting that one miscarriage and 23 deaths can be attributed to a recent outbreak of Listeria infections in the United States caused by tainted cantaloupes; 116 persons from 25 states have been infected with the outbreak-associated strains.

Ingestion of Listeria usually causes a limited gastrointestinal illness; however, the bacteria sometimes spread to other parts of the body, resulting in a deadly sepsis. Despite decades of medical research, severe infections caused by Listeria and other bacteria that cause sepsis, like MRSA, still threaten human health.

The Trudeau Institute study demonstrates that mice that have been genetically modified so they cannot produce factor XI (FXI), a specific blood-clotting factor, have an improved capacity to withstand injection with high doses of Listeria. The study also shows that normal mice treated with both an antibody targeting FXI along with antibiotics show improved survival during septic Listeria infection, as compared with mice treated with antibiotics alone.

These findings suggest FXI-targeted therapeutics may be useful for treating severe infections caused by Listeria and other sepsis-causing bacteria.

This recent work builds on a long history of Listeria research at the Trudeau Institute. In the 1960s the Institute's first director, Dr. George B. Mackaness, advanced the use of mouse models to study how cells of the immune system combat Listeria. He discovered that activated macrophages play a critical role in killing Listeria. He also discovered that lymphocytes, another type of immune cell, orchestrate this killing response. These seminal observations remain the foundation for modern studies of cell-mediated defense against pathogens.

The Trudeau Institute's second director, Dr. Robert J. North, extended this work by identifying the key subset of anti-Listeria lymphocytes: T cells. Dr. North and his Trudeau colleagues also described crucial roles for NK cells and neutrophils.

Several years ago, Dr. Smiley discovered that blood-clotting proteins also play critical protective roles during immune defense against Listeria. "I was really intrigued by our finding that clotting protects against Listeria because so many other studies had shown that clotting clogs blood vessels and contributes to organ failure and death during septic infections," said Dr. Smiley.

"Our finding suggested that some degree of blood clotting is essential for effective immune defense, but too much is harmful. We set out in search of ways to prevent the bad clotting while maintaining the good."

Specifically, Dr. Smiley's lab looked for clotting factors that appeared to be hyperactive in the septic state.

"The paper we've just published is our first demonstration of this exciting new approach to treating sepsis – we found that FXI is overproduced during septic Listeria infections and that therapeutics targeting FXI can reduce septic disease while maintaining immune defense."

Postdoctoral fellow Deyan Luo, assisted by Frank Szaba and Larry Kummer, led the research in the Smiley lab. Dr. Lawrence Johnson from the Trudeau Institute, Dr. David Gailani from Vanderbilt University, and Drs. Andras Gruber and Erik Tucker from the Oregon Health & Science University also made essential contributions.

About the Trudeau Institute

The Trudeau Institute is an independent, not-for-profit, biomedical research organization, whose scientific mission is to make breakthrough discoveries leading to improved human health. Trudeau researchers are identifying the basic mechanisms used by the immune system to combat viruses like influenza, mycobacteria, such as tuberculosis, parasites and cancer, so that better vaccines and therapies can be developed for fighting deadly disease.

The research is supported by government grants and philanthropic contributions.

Kim Godreau | EurekAlert!
Further information:
http://www.trudeauinstitute.org

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>