Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trophos announces top-line results in pivotal trial of olesoxime in spinal muscular atrophy

11.03.2014

Promising results for the maintenance of motor function in spinal muscular atrophy (SMA) - a rare, serious and debilitating pediatric-onset neurodegenerative disease

Trophos today announces that top-line results from a pivotal clinical trial of its lead product candidate olesoxime in spinal muscular atrophy (SMA) show a beneficial effect on the maintenance of motor function in SMA patients. If approved, olesoxime could be the first treatment specifically developed for SMA patients.

SMA is an autosomal recessive genetic disease that affects the motor neurons of the voluntary muscles used for activities such as crawling, walking, head and neck control and swallowing. SMA affects approximately 20,000 people worldwide. One in every 6,000 babies is born with SMA. It is the number one genetic cause of death in children under the age of two.

The mutated gene responsible for SMA is carried by up to 20 million potential parents in the US and EU. Most of them are unaware that they are carriers. SMA patients are divided into four subtypes depending on disease onset and severity, but they all suffer from the degeneration of motor neurons controlling voluntary muscles, with proximal limb and trunk muscle weakness leading to respiratory distress and in the most severe cases, death.

... more about:
»SMA »atrophy »death »mitochondrial »muscles »muscular »neurons »spinal

The pivotal study was conducted in seven European countries. It was a double-blind, placebo-controlled study in 165 type II and non-ambulatory type III SMA patients, ranging in age from 3 to 25 years old. Patients were randomized to treatment (10 mg/kg olesoxime dosed daily as a liquid oral suspension or matching placebo in a 2:1 ratio).

They were evaluated every three months for two years. The primary outcome measure was the change in motor function at two years using a standardized neuromuscular disease-specific functional scale, the MFM. The secondary outcome measures included an additional scale, the Hammersmith Functional Motor Scale for Spinal Muscular Atrophy, as well as electromyography measures, pulmonary function, patient-reported outcomes such as clinical global impression (CGI), quality of life measures (PedsQL), typical SMA complications and product safety.

Results from this pivotal study showed a progressive loss of motor function in the placebo arm, as described for the typical disease progression and similarly documented in other observational and interventional trials. This loss of function, assessed as the primary endpoint, was prevented for two years in olesoxime-treated patients, with fewer disease-related adverse events. Other secondary endpoints were consistent with these effects. Detailed results will be published and presented at upcoming conferences in Europe and the USA. The discovery of olesoxime and its development for SMA was mainly supported by AFM-Telethon, the French muscular dystrophy association.

“Spinal muscular atrophy is a devastating condition and a leading cause of death in babies and infants under two years old. Children with a less severe form of SMA suffer progressive muscle wasting and loss of mobility and motor function,” said Dr. Enrico Bertini, the principle investigator of the study. “Olesoxime has the potential to be the first ever approved treatment specifically developed for SMA patients. Its neuroprotective effect combined with fewer adverse events caused by the disease itself is encouraging. The results and data collected in this study on outcome measures and biomarkers will establish standards for future clinical trials in SMA patients.”

“We are grateful for the long-term financial support and commitment of AFM-Telethon and our other shareholders, to the patients, to their families and clinicians who have enabled us to complete this pivotal trial with olesoxime,” said Christine Placet, chief executive officer of Trophos. “Our focus now is on the regulatory steps needed to bring this important product to patients as quickly as possible. We are currently exploring a number of options, including potential industry partnerships and identifying new sources of funding.”
 
More information about spinal muscular atrophy
http://www.afm-telethon.fr
http://www.curesma.org
http://www.smafoundation.org/about-sma/
 
About olesoxime
Olesoxime (TRO19622) is the lead compound in Trophos' proprietary cholesterol-oxime family of compounds that target and preserve mitochondrial integrity and function in stressed cells. Preclinical studies have demonstrated that olesoxime promotes the function and survival of neurons and other cell types under disease-relevant stress conditions. It has been shown to be active in multiple preclinical neurodegeneration models including the NSE-Cre F7/F7 model of SMA.
Trophos has been granted 'Orphan Medicinal Product' designation for olesoxime for the treatment of SMA by the European Commission and orphan drug designation by the US Food and Drug Administration.

About Trophos
Trophos is a clinical stage pharmaceutical company developing innovative therapeutics for indications with under-served needs in neurology and cardiology. The company has a novel and proprietary cholesterol-oxime based chemistry platform generating a pipeline of drug candidates. The lead product, olesoxime (TRO19622), is being developed for SMA and multiple sclerosis. Other indications are in the selection process. Trophos' mitochondrial targeted compounds enhance the function and survival of stressed cells by preventing mitochondrial permeability transition, a key determinant of cell death or survival. There is growing support for the therapeutic rationale for such mitochondria targeted drugs, which Trophos is uniquely placed to exploit.
Trophos was founded in 1999 and is based in Marseille, France. It is supported by a syndicate of private equity funds among which Viveris Management, OTC Asset Management, Amundi PEF, Turenne Capital and Vesale Partners.
http://www.trophos.com

To view the original press release: http://www.ala.com/article.php?id=354

Alexandra Virey | ANDREW LLOYD & ASSOCIATES

Further reports about: SMA atrophy death mitochondrial muscles muscular neurons spinal

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>