Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trophos announces top-line results in pivotal trial of olesoxime in spinal muscular atrophy

11.03.2014

Promising results for the maintenance of motor function in spinal muscular atrophy (SMA) - a rare, serious and debilitating pediatric-onset neurodegenerative disease

Trophos today announces that top-line results from a pivotal clinical trial of its lead product candidate olesoxime in spinal muscular atrophy (SMA) show a beneficial effect on the maintenance of motor function in SMA patients. If approved, olesoxime could be the first treatment specifically developed for SMA patients.

SMA is an autosomal recessive genetic disease that affects the motor neurons of the voluntary muscles used for activities such as crawling, walking, head and neck control and swallowing. SMA affects approximately 20,000 people worldwide. One in every 6,000 babies is born with SMA. It is the number one genetic cause of death in children under the age of two.

The mutated gene responsible for SMA is carried by up to 20 million potential parents in the US and EU. Most of them are unaware that they are carriers. SMA patients are divided into four subtypes depending on disease onset and severity, but they all suffer from the degeneration of motor neurons controlling voluntary muscles, with proximal limb and trunk muscle weakness leading to respiratory distress and in the most severe cases, death.

... more about:
»SMA »atrophy »death »mitochondrial »muscles »muscular »neurons »spinal

The pivotal study was conducted in seven European countries. It was a double-blind, placebo-controlled study in 165 type II and non-ambulatory type III SMA patients, ranging in age from 3 to 25 years old. Patients were randomized to treatment (10 mg/kg olesoxime dosed daily as a liquid oral suspension or matching placebo in a 2:1 ratio).

They were evaluated every three months for two years. The primary outcome measure was the change in motor function at two years using a standardized neuromuscular disease-specific functional scale, the MFM. The secondary outcome measures included an additional scale, the Hammersmith Functional Motor Scale for Spinal Muscular Atrophy, as well as electromyography measures, pulmonary function, patient-reported outcomes such as clinical global impression (CGI), quality of life measures (PedsQL), typical SMA complications and product safety.

Results from this pivotal study showed a progressive loss of motor function in the placebo arm, as described for the typical disease progression and similarly documented in other observational and interventional trials. This loss of function, assessed as the primary endpoint, was prevented for two years in olesoxime-treated patients, with fewer disease-related adverse events. Other secondary endpoints were consistent with these effects. Detailed results will be published and presented at upcoming conferences in Europe and the USA. The discovery of olesoxime and its development for SMA was mainly supported by AFM-Telethon, the French muscular dystrophy association.

“Spinal muscular atrophy is a devastating condition and a leading cause of death in babies and infants under two years old. Children with a less severe form of SMA suffer progressive muscle wasting and loss of mobility and motor function,” said Dr. Enrico Bertini, the principle investigator of the study. “Olesoxime has the potential to be the first ever approved treatment specifically developed for SMA patients. Its neuroprotective effect combined with fewer adverse events caused by the disease itself is encouraging. The results and data collected in this study on outcome measures and biomarkers will establish standards for future clinical trials in SMA patients.”

“We are grateful for the long-term financial support and commitment of AFM-Telethon and our other shareholders, to the patients, to their families and clinicians who have enabled us to complete this pivotal trial with olesoxime,” said Christine Placet, chief executive officer of Trophos. “Our focus now is on the regulatory steps needed to bring this important product to patients as quickly as possible. We are currently exploring a number of options, including potential industry partnerships and identifying new sources of funding.”
 
More information about spinal muscular atrophy
http://www.afm-telethon.fr
http://www.curesma.org
http://www.smafoundation.org/about-sma/
 
About olesoxime
Olesoxime (TRO19622) is the lead compound in Trophos' proprietary cholesterol-oxime family of compounds that target and preserve mitochondrial integrity and function in stressed cells. Preclinical studies have demonstrated that olesoxime promotes the function and survival of neurons and other cell types under disease-relevant stress conditions. It has been shown to be active in multiple preclinical neurodegeneration models including the NSE-Cre F7/F7 model of SMA.
Trophos has been granted 'Orphan Medicinal Product' designation for olesoxime for the treatment of SMA by the European Commission and orphan drug designation by the US Food and Drug Administration.

About Trophos
Trophos is a clinical stage pharmaceutical company developing innovative therapeutics for indications with under-served needs in neurology and cardiology. The company has a novel and proprietary cholesterol-oxime based chemistry platform generating a pipeline of drug candidates. The lead product, olesoxime (TRO19622), is being developed for SMA and multiple sclerosis. Other indications are in the selection process. Trophos' mitochondrial targeted compounds enhance the function and survival of stressed cells by preventing mitochondrial permeability transition, a key determinant of cell death or survival. There is growing support for the therapeutic rationale for such mitochondria targeted drugs, which Trophos is uniquely placed to exploit.
Trophos was founded in 1999 and is based in Marseille, France. It is supported by a syndicate of private equity funds among which Viveris Management, OTC Asset Management, Amundi PEF, Turenne Capital and Vesale Partners.
http://www.trophos.com

To view the original press release: http://www.ala.com/article.php?id=354

Alexandra Virey | ANDREW LLOYD & ASSOCIATES

Further reports about: SMA atrophy death mitochondrial muscles muscular neurons spinal

More articles from Life Sciences:

nachricht Pathogenic bacteria hitchhiking to North and Baltic Seas?
22.07.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unconventional quasiparticles predicted in conventional crystals
22.07.2016 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Newly discovered material property may lead to high temp superconductivity

25.07.2016 | Materials Sciences

Did you know that UV light helps to ensure safe bathing during the summer months?

25.07.2016 | Power and Electrical Engineering

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>