Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trophos announces top-line results in pivotal trial of olesoxime in spinal muscular atrophy

11.03.2014

Promising results for the maintenance of motor function in spinal muscular atrophy (SMA) - a rare, serious and debilitating pediatric-onset neurodegenerative disease

Trophos today announces that top-line results from a pivotal clinical trial of its lead product candidate olesoxime in spinal muscular atrophy (SMA) show a beneficial effect on the maintenance of motor function in SMA patients. If approved, olesoxime could be the first treatment specifically developed for SMA patients.

SMA is an autosomal recessive genetic disease that affects the motor neurons of the voluntary muscles used for activities such as crawling, walking, head and neck control and swallowing. SMA affects approximately 20,000 people worldwide. One in every 6,000 babies is born with SMA. It is the number one genetic cause of death in children under the age of two.

The mutated gene responsible for SMA is carried by up to 20 million potential parents in the US and EU. Most of them are unaware that they are carriers. SMA patients are divided into four subtypes depending on disease onset and severity, but they all suffer from the degeneration of motor neurons controlling voluntary muscles, with proximal limb and trunk muscle weakness leading to respiratory distress and in the most severe cases, death.

... more about:
»SMA »atrophy »death »mitochondrial »muscles »muscular »neurons »spinal

The pivotal study was conducted in seven European countries. It was a double-blind, placebo-controlled study in 165 type II and non-ambulatory type III SMA patients, ranging in age from 3 to 25 years old. Patients were randomized to treatment (10 mg/kg olesoxime dosed daily as a liquid oral suspension or matching placebo in a 2:1 ratio).

They were evaluated every three months for two years. The primary outcome measure was the change in motor function at two years using a standardized neuromuscular disease-specific functional scale, the MFM. The secondary outcome measures included an additional scale, the Hammersmith Functional Motor Scale for Spinal Muscular Atrophy, as well as electromyography measures, pulmonary function, patient-reported outcomes such as clinical global impression (CGI), quality of life measures (PedsQL), typical SMA complications and product safety.

Results from this pivotal study showed a progressive loss of motor function in the placebo arm, as described for the typical disease progression and similarly documented in other observational and interventional trials. This loss of function, assessed as the primary endpoint, was prevented for two years in olesoxime-treated patients, with fewer disease-related adverse events. Other secondary endpoints were consistent with these effects. Detailed results will be published and presented at upcoming conferences in Europe and the USA. The discovery of olesoxime and its development for SMA was mainly supported by AFM-Telethon, the French muscular dystrophy association.

“Spinal muscular atrophy is a devastating condition and a leading cause of death in babies and infants under two years old. Children with a less severe form of SMA suffer progressive muscle wasting and loss of mobility and motor function,” said Dr. Enrico Bertini, the principle investigator of the study. “Olesoxime has the potential to be the first ever approved treatment specifically developed for SMA patients. Its neuroprotective effect combined with fewer adverse events caused by the disease itself is encouraging. The results and data collected in this study on outcome measures and biomarkers will establish standards for future clinical trials in SMA patients.”

“We are grateful for the long-term financial support and commitment of AFM-Telethon and our other shareholders, to the patients, to their families and clinicians who have enabled us to complete this pivotal trial with olesoxime,” said Christine Placet, chief executive officer of Trophos. “Our focus now is on the regulatory steps needed to bring this important product to patients as quickly as possible. We are currently exploring a number of options, including potential industry partnerships and identifying new sources of funding.”
 
More information about spinal muscular atrophy
http://www.afm-telethon.fr
http://www.curesma.org
http://www.smafoundation.org/about-sma/
 
About olesoxime
Olesoxime (TRO19622) is the lead compound in Trophos' proprietary cholesterol-oxime family of compounds that target and preserve mitochondrial integrity and function in stressed cells. Preclinical studies have demonstrated that olesoxime promotes the function and survival of neurons and other cell types under disease-relevant stress conditions. It has been shown to be active in multiple preclinical neurodegeneration models including the NSE-Cre F7/F7 model of SMA.
Trophos has been granted 'Orphan Medicinal Product' designation for olesoxime for the treatment of SMA by the European Commission and orphan drug designation by the US Food and Drug Administration.

About Trophos
Trophos is a clinical stage pharmaceutical company developing innovative therapeutics for indications with under-served needs in neurology and cardiology. The company has a novel and proprietary cholesterol-oxime based chemistry platform generating a pipeline of drug candidates. The lead product, olesoxime (TRO19622), is being developed for SMA and multiple sclerosis. Other indications are in the selection process. Trophos' mitochondrial targeted compounds enhance the function and survival of stressed cells by preventing mitochondrial permeability transition, a key determinant of cell death or survival. There is growing support for the therapeutic rationale for such mitochondria targeted drugs, which Trophos is uniquely placed to exploit.
Trophos was founded in 1999 and is based in Marseille, France. It is supported by a syndicate of private equity funds among which Viveris Management, OTC Asset Management, Amundi PEF, Turenne Capital and Vesale Partners.
http://www.trophos.com

To view the original press release: http://www.ala.com/article.php?id=354

Alexandra Virey | ANDREW LLOYD & ASSOCIATES

Further reports about: SMA atrophy death mitochondrial muscles muscular neurons spinal

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>