Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Trophos announces top-line results in pivotal trial of olesoxime in spinal muscular atrophy


Promising results for the maintenance of motor function in spinal muscular atrophy (SMA) - a rare, serious and debilitating pediatric-onset neurodegenerative disease

Trophos today announces that top-line results from a pivotal clinical trial of its lead product candidate olesoxime in spinal muscular atrophy (SMA) show a beneficial effect on the maintenance of motor function in SMA patients. If approved, olesoxime could be the first treatment specifically developed for SMA patients.

SMA is an autosomal recessive genetic disease that affects the motor neurons of the voluntary muscles used for activities such as crawling, walking, head and neck control and swallowing. SMA affects approximately 20,000 people worldwide. One in every 6,000 babies is born with SMA. It is the number one genetic cause of death in children under the age of two.

The mutated gene responsible for SMA is carried by up to 20 million potential parents in the US and EU. Most of them are unaware that they are carriers. SMA patients are divided into four subtypes depending on disease onset and severity, but they all suffer from the degeneration of motor neurons controlling voluntary muscles, with proximal limb and trunk muscle weakness leading to respiratory distress and in the most severe cases, death.

... more about:
»SMA »atrophy »death »mitochondrial »muscles »muscular »neurons »spinal

The pivotal study was conducted in seven European countries. It was a double-blind, placebo-controlled study in 165 type II and non-ambulatory type III SMA patients, ranging in age from 3 to 25 years old. Patients were randomized to treatment (10 mg/kg olesoxime dosed daily as a liquid oral suspension or matching placebo in a 2:1 ratio).

They were evaluated every three months for two years. The primary outcome measure was the change in motor function at two years using a standardized neuromuscular disease-specific functional scale, the MFM. The secondary outcome measures included an additional scale, the Hammersmith Functional Motor Scale for Spinal Muscular Atrophy, as well as electromyography measures, pulmonary function, patient-reported outcomes such as clinical global impression (CGI), quality of life measures (PedsQL), typical SMA complications and product safety.

Results from this pivotal study showed a progressive loss of motor function in the placebo arm, as described for the typical disease progression and similarly documented in other observational and interventional trials. This loss of function, assessed as the primary endpoint, was prevented for two years in olesoxime-treated patients, with fewer disease-related adverse events. Other secondary endpoints were consistent with these effects. Detailed results will be published and presented at upcoming conferences in Europe and the USA. The discovery of olesoxime and its development for SMA was mainly supported by AFM-Telethon, the French muscular dystrophy association.

“Spinal muscular atrophy is a devastating condition and a leading cause of death in babies and infants under two years old. Children with a less severe form of SMA suffer progressive muscle wasting and loss of mobility and motor function,” said Dr. Enrico Bertini, the principle investigator of the study. “Olesoxime has the potential to be the first ever approved treatment specifically developed for SMA patients. Its neuroprotective effect combined with fewer adverse events caused by the disease itself is encouraging. The results and data collected in this study on outcome measures and biomarkers will establish standards for future clinical trials in SMA patients.”

“We are grateful for the long-term financial support and commitment of AFM-Telethon and our other shareholders, to the patients, to their families and clinicians who have enabled us to complete this pivotal trial with olesoxime,” said Christine Placet, chief executive officer of Trophos. “Our focus now is on the regulatory steps needed to bring this important product to patients as quickly as possible. We are currently exploring a number of options, including potential industry partnerships and identifying new sources of funding.”
More information about spinal muscular atrophy
About olesoxime
Olesoxime (TRO19622) is the lead compound in Trophos' proprietary cholesterol-oxime family of compounds that target and preserve mitochondrial integrity and function in stressed cells. Preclinical studies have demonstrated that olesoxime promotes the function and survival of neurons and other cell types under disease-relevant stress conditions. It has been shown to be active in multiple preclinical neurodegeneration models including the NSE-Cre F7/F7 model of SMA.
Trophos has been granted 'Orphan Medicinal Product' designation for olesoxime for the treatment of SMA by the European Commission and orphan drug designation by the US Food and Drug Administration.

About Trophos
Trophos is a clinical stage pharmaceutical company developing innovative therapeutics for indications with under-served needs in neurology and cardiology. The company has a novel and proprietary cholesterol-oxime based chemistry platform generating a pipeline of drug candidates. The lead product, olesoxime (TRO19622), is being developed for SMA and multiple sclerosis. Other indications are in the selection process. Trophos' mitochondrial targeted compounds enhance the function and survival of stressed cells by preventing mitochondrial permeability transition, a key determinant of cell death or survival. There is growing support for the therapeutic rationale for such mitochondria targeted drugs, which Trophos is uniquely placed to exploit.
Trophos was founded in 1999 and is based in Marseille, France. It is supported by a syndicate of private equity funds among which Viveris Management, OTC Asset Management, Amundi PEF, Turenne Capital and Vesale Partners.

To view the original press release:


Further reports about: SMA atrophy death mitochondrial muscles muscular neurons spinal

More articles from Life Sciences:

nachricht Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes
07.10.2015 | Karl-Franzens-Universität Graz

nachricht Flipping molecular attachments amps up activity of CO2 catalyst
06.10.2015 | DOE/Brookhaven National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Kick-off for a new era of precision astronomy

07.10.2015 | Physics and Astronomy

Distinguishing coincidence from causality: connections in the climate system

07.10.2015 | Earth Sciences

Finding cannabinoids in hair does not prove cannabis consumption

07.10.2015 | Health and Medicine

More VideoLinks >>>