Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trio of biomarkers may help identify kidney cancer in early stages

11.03.2013
A new immunoassay that tests for the presence of three biomarkers appears to be a valid screening method for the early detection of malignant kidney cancer, according to data published in Cancer Epidemiology, Biomarkers & Prevention, a journal of the American Association for Cancer Research.

"Renal cell carcinoma, a malignant tumor arising from the kidney, is one of the most difficult forms of cancer to detect and treat properly because it remains silent until disseminating to other organs," said Nam Hoon Cho, M.D., of the Department of Pathology at Yonsei University Health System in Seoul, Korea. "Furthermore, because imaging, which is high-cost, is seldom performed without any specific reasons, developing a blood-tumor biomarker is a great chance to detect the silent killer."

The new immunoassay developed by Cho and colleagues from Genomine Inc. measured the levels of three potential biomarkers for kidney cancer: nicotinamide N-methyltransferase (NNMT), L-plastin (LCP1) and nonmetastatic cells 1 protein (NM23A).

Using this assay, the researchers measured concentrations of NNMT, LCP1 and NM23A in 189 plasma samples from 102 healthy controls and patients with benign tumors and 87 patients with kidney cancer. Plasma levels indicated that all three biomarkers were highly elevated in patients with kidney cancer. For example, the median level of NNMT concentration in healthy controls was 68 pg/mL compared with 420 pg/mL for patients with kidney cancer.

Next, the researchers tested the ability of the immunoassay to distinguish plasma samples from healthy controls and patients with kidney cancer using the same 189 plasma samples already tested. The results indicated that the three-marker assay was highly accurate. When it correctly identified 90 percent of the samples from healthy controls, it also correctly identified 94.4 percent of the samples from patients with kidney cancer.

To validate the accuracy of the test, the researchers blind tested an additional 100 plasma samples from 73 healthy controls and 27 patients with kidney cancer. In this analysis, 67 of the samples from the 73 healthy controls and all of the samples from patients with kidney cancer were classified correctly.

"If this biomarker is truly valid and accurate to detect renal cell carcinoma, a number of patients with renal cell carcinoma could potentially be saved through early diagnosis," Cho said.

Cho and colleagues hope that this biomarker will soon be commercially available. They are currently working toward approval by the U.S. Food and Drug Administration.

Follow the AACR on Twitter: @aacr
Follow the AACR on Facebook: http://www.facebook.com/aacr.org
About the American Association for Cancer Research
Founded in 1907, the American Association for Cancer Research (AACR) is the world's first and largest professional organization dedicated to advancing cancer research and its mission to prevent and cure cancer. AACR membership includes more than 34,000 laboratory, translational and clinical researchers; population scientists; other health care professionals; and cancer advocates residing in more than 90 countries. The AACR marshals the full spectrum of expertise of the cancer community to accelerate progress in the prevention, biology, diagnosis and treatment of cancer by annually convening more than 20 conferences and educational workshops, the largest of which is the AACR Annual Meeting with more than 17,000 attendees. In addition, the AACR publishes eight peer-reviewed scientific journals and a magazine for cancer survivors, patients and their caregivers. The AACR funds meritorious research directly as well as in cooperation with numerous cancer organizations. As the scientific partner of Stand Up To Cancer, the AACR provides expert peer review, grants administration and scientific oversight of team science and individual grants in cancer research that have the potential for near-term patient benefit. The AACR actively communicates with legislators and policymakers about the value of cancer research and related biomedical science in saving lives from cancer. For more information about the AACR, visit http://www.AACR.org.

Jeremy Moore | EurekAlert!
Further information:
http://www.aacr.org

Further reports about: LCP1 cancer research cell carcinoma kidney cancer renal cell carcinoma

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

A Keen Sense for Molecules

23.02.2018 | Physics and Astronomy

“Laser Technology Live” at the AKL’18 International Laser Technology Congress in Aachen

23.02.2018 | Trade Fair News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>