Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How TRIM5 fights HIV

Thanks to a certain protein, rhesus monkeys are resistant to HIV. Known as TRIM5, the protein prevents the HI virus from multiplying once it has entered the cell. Researchers from the universities of Geneva and Zurich have now discovered the protein’s mechanism, as they report in Nature. This also opens up new prospects for fighting HIV in humans.

Unlike people, certain monkey species, such as rhesus or night monkeys, are resistant to HIV thanks to TRIM5, a cellular protein: In the case of an HIV infection, the protein intercepts the virus as soon as it enters the cell and prevents it from multiplying. We have known about TRIM5 for over six years. However, the mechanism TRIM5 uses to prevent the HI virus from multiplying was still largely unknown.

Structure of the shell

Night monkeys are resistant to HIV

The majority of the key aspects of TRIM5’s defense mechanism against HIV was discovered by the Swiss research teams of Prof. Jeremy Luban, University of Geneva, and Prof. Markus Grütter, University of Zurich, in collaboration with teams from the USA and France. They demonstrated that TRIM5 immediately triggers an immune response if infected with HIV. Consequently, TRIM5 is an HIV sensor in the innate immune system. Unlike the adaptive immune system, which only develops when confronted with a pathogen, the innate immune system is already able to eliminate pathogens as soon as it comes into contact with them.

The HI virus, which penetrates the cell during an infection, has a shell, the components of which are arranged in a lattice, similar to the pattern on a soccer ball. TRIM5 recognizes this lattice structure and specifically attaches itself to it. This stimulates the protein to produce signal molecules known as polyubiquitin chains in the cell. These chains immediately trigger an anti-viral reaction. The “alerted” cell can then start eliminating cells infected with HIV by releasing messenger substances (cytokines).

Humans also have a TRIM5 protein, but it is less effective in fending off HIV. However, the findings in resistant monkeys have opened up new possibilities and ways of fighting HIV in humans. 33 million people are currently infected with HIV worldwide; two million die of AIDS each year. And with 2.7 million people becoming infected every year, HIV remains a major problem.

Pertel, T., Hausmann, S., Morger, D., Züger, S., Guerra, J., Lascano, J., Reinhard, C., Santoni, FA., Uchil, PD., Chatel, L., Bisiaux, A., Albert, ML., Strambio-de-Castillia, C., Mothes, W., Pizzato, M., Grütter, MG. & Luban, J. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature April 21, 2011.
Prof. Markus Grütter
Department of Biochemistry
University of Zurich
Tel.: +41 44 635 55 80

Beat Müller | Universität Zürich
Further information:

Further reports about: HIV Nature Immunology TRIM5 immune system rhesus monkeys signal molecule

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>