Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tricolor Liquid Crystals

03.08.2011
Thermal and mechanical stimuli switch the luminescence of a liquid-crystal mixture between three different colors

Luminescent materials that change their light-emitting properties in response to external stimuli could provide interesting new approaches for novel storage materials, sensors, security materials, and information displays.

Typically, such materials can either be switched from “on” to “off” or between two different colors. It has not previously been possible to switch between three different stable colors with materials containing only a single luminescent substance. In the journal Angewandte Chemie, Takashi Kato and Yoshimitsu Sagara from the University of Tokyo (Japan) have now introduced a liquid-crystalline material that can be switched back and forth between three different colors by means of thermal and mechanical stimuli.

The new material consists of two dumbbell-shaped organic compounds—one small and one large, both consisting of a branched arrangement of aromatic six-membered rings. The large molecule contains an anthracene component as the luminescent group (luminophore). This mixture of molecules aggregates to form liquid crystals. Molecules in a liquid-crystalline state are partially ordered like in a crystal, but are mobile like in a liquid. Liquid crystals are most commonly found in liquid-crystal displays.

The Japanese researchers prepared thin films of their special liquid crystals. Under UV light, these films glow red-orange. Mechanical shearing, such as rubbing, at 90 °C changes the arrangement of the liquid crystals—the rubbed areas now appear green. This new, green phase is stable between room temperature and 146 °C. This amazing film can do more: both the red-orange and green phases can be changed to a yellow one by rubbing at room temperature. Heating to 145 °C and subsequent cooling to room temperature changes the green and yellow back to red-orange.

If this luminescent mixture can be incorporated into materials such as structural polymers, the thermal and stress histories for the materials are easily detected by bright luminescence color changes. Knowledge of these histories is useful for the maintenance of the materials systems, which include coatings and plastics. In addition, artists may be interested in these materials because of the beauty of the luminescence colors and the ease of writing/erasing and stability of the generated images.

Author: Takashi Kato, University of Tokyo (Japan), http://kato.t.u-tokyo.ac.jp/index-e.html
Title: Brightly Tricolored Mechanochromic Luminescence from a Single-Luminophore Liquid Crystal: Reversible Writing and Erasing of Images

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201100914

Takashi Kato | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://kato.t.u-tokyo.ac.jp/index-e.html

More articles from Life Sciences:

nachricht Viruses support photosynthesis in bacteria – an evolutionary advantage?
23.02.2017 | Technische Universität Kaiserslautern

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Viruses support photosynthesis in bacteria – an evolutionary advantage?

23.02.2017 | Life Sciences

Researchers pave the way for ionotronic nanodevices

23.02.2017 | Power and Electrical Engineering

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>