Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tricolor Liquid Crystals

03.08.2011
Thermal and mechanical stimuli switch the luminescence of a liquid-crystal mixture between three different colors

Luminescent materials that change their light-emitting properties in response to external stimuli could provide interesting new approaches for novel storage materials, sensors, security materials, and information displays.

Typically, such materials can either be switched from “on” to “off” or between two different colors. It has not previously been possible to switch between three different stable colors with materials containing only a single luminescent substance. In the journal Angewandte Chemie, Takashi Kato and Yoshimitsu Sagara from the University of Tokyo (Japan) have now introduced a liquid-crystalline material that can be switched back and forth between three different colors by means of thermal and mechanical stimuli.

The new material consists of two dumbbell-shaped organic compounds—one small and one large, both consisting of a branched arrangement of aromatic six-membered rings. The large molecule contains an anthracene component as the luminescent group (luminophore). This mixture of molecules aggregates to form liquid crystals. Molecules in a liquid-crystalline state are partially ordered like in a crystal, but are mobile like in a liquid. Liquid crystals are most commonly found in liquid-crystal displays.

The Japanese researchers prepared thin films of their special liquid crystals. Under UV light, these films glow red-orange. Mechanical shearing, such as rubbing, at 90 °C changes the arrangement of the liquid crystals—the rubbed areas now appear green. This new, green phase is stable between room temperature and 146 °C. This amazing film can do more: both the red-orange and green phases can be changed to a yellow one by rubbing at room temperature. Heating to 145 °C and subsequent cooling to room temperature changes the green and yellow back to red-orange.

If this luminescent mixture can be incorporated into materials such as structural polymers, the thermal and stress histories for the materials are easily detected by bright luminescence color changes. Knowledge of these histories is useful for the maintenance of the materials systems, which include coatings and plastics. In addition, artists may be interested in these materials because of the beauty of the luminescence colors and the ease of writing/erasing and stability of the generated images.

Author: Takashi Kato, University of Tokyo (Japan), http://kato.t.u-tokyo.ac.jp/index-e.html
Title: Brightly Tricolored Mechanochromic Luminescence from a Single-Luminophore Liquid Crystal: Reversible Writing and Erasing of Images

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201100914

Takashi Kato | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://kato.t.u-tokyo.ac.jp/index-e.html

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>