Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tricolor Liquid Crystals

03.08.2011
Thermal and mechanical stimuli switch the luminescence of a liquid-crystal mixture between three different colors

Luminescent materials that change their light-emitting properties in response to external stimuli could provide interesting new approaches for novel storage materials, sensors, security materials, and information displays.

Typically, such materials can either be switched from “on” to “off” or between two different colors. It has not previously been possible to switch between three different stable colors with materials containing only a single luminescent substance. In the journal Angewandte Chemie, Takashi Kato and Yoshimitsu Sagara from the University of Tokyo (Japan) have now introduced a liquid-crystalline material that can be switched back and forth between three different colors by means of thermal and mechanical stimuli.

The new material consists of two dumbbell-shaped organic compounds—one small and one large, both consisting of a branched arrangement of aromatic six-membered rings. The large molecule contains an anthracene component as the luminescent group (luminophore). This mixture of molecules aggregates to form liquid crystals. Molecules in a liquid-crystalline state are partially ordered like in a crystal, but are mobile like in a liquid. Liquid crystals are most commonly found in liquid-crystal displays.

The Japanese researchers prepared thin films of their special liquid crystals. Under UV light, these films glow red-orange. Mechanical shearing, such as rubbing, at 90 °C changes the arrangement of the liquid crystals—the rubbed areas now appear green. This new, green phase is stable between room temperature and 146 °C. This amazing film can do more: both the red-orange and green phases can be changed to a yellow one by rubbing at room temperature. Heating to 145 °C and subsequent cooling to room temperature changes the green and yellow back to red-orange.

If this luminescent mixture can be incorporated into materials such as structural polymers, the thermal and stress histories for the materials are easily detected by bright luminescence color changes. Knowledge of these histories is useful for the maintenance of the materials systems, which include coatings and plastics. In addition, artists may be interested in these materials because of the beauty of the luminescence colors and the ease of writing/erasing and stability of the generated images.

Author: Takashi Kato, University of Tokyo (Japan), http://kato.t.u-tokyo.ac.jp/index-e.html
Title: Brightly Tricolored Mechanochromic Luminescence from a Single-Luminophore Liquid Crystal: Reversible Writing and Erasing of Images

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201100914

Takashi Kato | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://kato.t.u-tokyo.ac.jp/index-e.html

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>