Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tricking Plants to See the Light May Control the Most Important Twitch on Earth

06.08.2014

Copious corn growing in tiny backyard plots? Roses blooming in December?

Thanks to technology that the University of Wisconsin-Madison’s Richard Vierstra has been developing for years, these things may soon be possible. And now, new findings out of the genetics professor’s lab promise to advance that technology even further.

For the first time, Vierstra and his team have revealed the structure of the plant phytochrome, a critical molecule that detects the light that tells plants when to germinate, grow, make food, flower and even age. Like eyes, the phytochrome is a light sensor that converts sunlight into chemical signals to get these jobs done. By manipulating it, the group can alter the conditions under which all plants grow and develop.

Vierstra’s group published the structure in a recent issue of the journal Proceedings of the National Academy of Sciences. His team also presented its results this month at the annual meeting of the American Society of Plant Biologists in Portland, Oregon.

“It’s the molecule that tells plants when to flower,” says Vierstra. “Plants use the molecule to sense where they are in the canopy; they use the phytochromes for color vision — to sense whether they are above, next to or under other plants.”

Vierstra previously determined the structure of a similar phytochrome from light-sensing bacteria, which guided his work in plants. He already has several patents on the technologies derived from these structures and has been in talks to commercialize them. The determination of a plant phytochrome three-dimensional structure will only accelerate improvements to the technology.

One of the biggest moves in agriculture, Vierstra says, is to be able to grow plants at higher density, allowing producers to plant more crops in a given area, thus saving space and other resources.

Currently, there is a limit to how closely plants can grow relative to their nearest neighbors. At high density, the leaves of one plant shade the other, signaling to the shaded plant it isn’t receiving enough sunlight. These plants grow stems and stalks rather than fruits and seeds, becoming long and leggy as they reach for the sky.

That process begins with the phytochrome, which senses the wavelength of light shining on plants. Plants in full sun absorb red light while shaded plants receive only the leftover, far-red light. The type of light the phytochrome “sees” tells the plant whether to stretch out and become taller or to flower and make fruit. Based on the light available, the phytochrome cycles between an inactive and active state.

“Photoconversion between the active and inactive states of phytochromes is arguably the most important twitch on this planet, as it tells plants to become photosynthetic and consequently make the food we eat and the oxygen we breathe,” says Vierstra.

Vierstra and his team found that by making specific changes to the light sensor, they can dupe it into staying in its active state longer.

“By mutating the phytochromes, we created plants that think they’re in full sun, even when they’re not,” Vierstra says.

Three decades ago, while a postdoctoral researcher at UW-Madison, Vierstra was the first to purify the phytochrome protein. Now, his work has come full circle. He hopes the research team’s findings become the scaffold for a toolkit others can use — one that might fundamentally alter agriculture.

In addition to growers, the research also has implications for other scientists, as the technology could be used to create new fluorescent molecules for detecting minuscule events inside cells, and in the field of optogenetics, which uses light as a tool to drive biological change.

The work was supported by grants from the National Science Foundation and the University of Wisconsin College of Agricultural and Life Sciences. The Wisconsin Alumni Research Foundation holds Vierstra’s patents on the technology.

Richard Vierstra, vierstra@wisc.edu

(also available at 608-262-8215 after Aug. 10)

Richard Vierstra | newswise

Further reports about: Earth Plants agriculture flower grow optogenetics phytochrome structure sunlight

More articles from Life Sciences:

nachricht MACC1 Gene Is an Independent Prognostic Biomarker for Survival in Klatskin Tumor Patients
31.08.2015 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Siemens sells 18 industrial gas turbines to Thailand

01.09.2015 | Press release

An engineered surface unsticks sticky water droplets

01.09.2015 | Materials Sciences

New material science research may advance tech tools

01.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>