Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tricking Plants to See the Light May Control the Most Important Twitch on Earth

06.08.2014

Copious corn growing in tiny backyard plots? Roses blooming in December?

Thanks to technology that the University of Wisconsin-Madison’s Richard Vierstra has been developing for years, these things may soon be possible. And now, new findings out of the genetics professor’s lab promise to advance that technology even further.

For the first time, Vierstra and his team have revealed the structure of the plant phytochrome, a critical molecule that detects the light that tells plants when to germinate, grow, make food, flower and even age. Like eyes, the phytochrome is a light sensor that converts sunlight into chemical signals to get these jobs done. By manipulating it, the group can alter the conditions under which all plants grow and develop.

Vierstra’s group published the structure in a recent issue of the journal Proceedings of the National Academy of Sciences. His team also presented its results this month at the annual meeting of the American Society of Plant Biologists in Portland, Oregon.

“It’s the molecule that tells plants when to flower,” says Vierstra. “Plants use the molecule to sense where they are in the canopy; they use the phytochromes for color vision — to sense whether they are above, next to or under other plants.”

Vierstra previously determined the structure of a similar phytochrome from light-sensing bacteria, which guided his work in plants. He already has several patents on the technologies derived from these structures and has been in talks to commercialize them. The determination of a plant phytochrome three-dimensional structure will only accelerate improvements to the technology.

One of the biggest moves in agriculture, Vierstra says, is to be able to grow plants at higher density, allowing producers to plant more crops in a given area, thus saving space and other resources.

Currently, there is a limit to how closely plants can grow relative to their nearest neighbors. At high density, the leaves of one plant shade the other, signaling to the shaded plant it isn’t receiving enough sunlight. These plants grow stems and stalks rather than fruits and seeds, becoming long and leggy as they reach for the sky.

That process begins with the phytochrome, which senses the wavelength of light shining on plants. Plants in full sun absorb red light while shaded plants receive only the leftover, far-red light. The type of light the phytochrome “sees” tells the plant whether to stretch out and become taller or to flower and make fruit. Based on the light available, the phytochrome cycles between an inactive and active state.

“Photoconversion between the active and inactive states of phytochromes is arguably the most important twitch on this planet, as it tells plants to become photosynthetic and consequently make the food we eat and the oxygen we breathe,” says Vierstra.

Vierstra and his team found that by making specific changes to the light sensor, they can dupe it into staying in its active state longer.

“By mutating the phytochromes, we created plants that think they’re in full sun, even when they’re not,” Vierstra says.

Three decades ago, while a postdoctoral researcher at UW-Madison, Vierstra was the first to purify the phytochrome protein. Now, his work has come full circle. He hopes the research team’s findings become the scaffold for a toolkit others can use — one that might fundamentally alter agriculture.

In addition to growers, the research also has implications for other scientists, as the technology could be used to create new fluorescent molecules for detecting minuscule events inside cells, and in the field of optogenetics, which uses light as a tool to drive biological change.

The work was supported by grants from the National Science Foundation and the University of Wisconsin College of Agricultural and Life Sciences. The Wisconsin Alumni Research Foundation holds Vierstra’s patents on the technology.

Richard Vierstra, vierstra@wisc.edu

(also available at 608-262-8215 after Aug. 10)

Richard Vierstra | newswise

Further reports about: Earth Plants agriculture flower grow optogenetics phytochrome structure sunlight

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>