Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tremendous progress in the development of skin stem cell treatments for butterfly children

27.11.2014

Scientists at IMBA – Institute of Molecular Biotechnology of the Austrian Academy of Sciences in Vienna have made a major advancement towards a future therapy for butterfly children. A treatment with fibroblasts generated from induced pluripotent stem cells has been highly successful in mice. The next step is to establish this method in humans.

“Butterfly children” suffer from Epidermolysis Bullosa (EB), a debilitating skin disease. It is caused by a genetic defect that leads to a deficiency or complete lack of various structural proteins. In one particularly severe form, the protein collagen 7 is either missing or present only in insufficient amounts.

If that bond is missing, the skin forms blisters or tears at the slightest mechanical pressure, leading to wounds and inflammation that require extensive treatment with creams and bandages. Often these constant lesions also lead to aggressive forms of skin cancer.

Presently there is no cure for this disease. But there are promising approaches that could lead to successful treatments in the future. One of them is a method called “fibroblast injection”. In this procedure, fibroblasts are injected between the layers of the skin, where they can produce the necessary collagen 7.

Researchers at IMBA under the leadership of Arabella Meixner have now been successful in developing this method to treat mice affected by EB. The individual steps of this treatment have been worked out and carefully tested in many years of laboratory work, and the results have now been published in the scientific journal “Science Translational Medicine”.

First the scientists returned skin cells of the diseased mice to the stem cell stage and then repaired the genetic defect, the root cause of the disease. Then the researchers transformed stem cells back into fibroblasts.

Before the repaired fibroblasts could be reintroduced into the organism, measures to prevent inflammation or rejection were necessary. In this study the researchers conducted a type of “toxicity test”, and the results were very promising. After several months of observation, no adverse immune reactions occurred, and the risk of skin cancer did not increase. That is an important consideration because “butterfly children” already have a greatly increased risk of skin cancer.

But the greatest success of the researchers was the significantly increased tear resistance of the skin. Arabella Meixner, research lead, is delighted at the good results: “Our mechanical stress test with a soft eraser brush demonstrated that the skin of the mice treated with the stem cell therapy remained stable, and that no more wounds occurred. That means there was enough collagen 7 between the skin cells to hold them together properly. Our study clearly showed that this method is suitable for a future therapy for “butterfly children.”

The next step is to establish this skin stem cell treatment in humans. To achieve that, the IMBA scientists intend to look for partners with clinical experience. For severe forms of Epidermolysis Bullosa, a systemic application needs to be developed to spread the cells throughout the entire body via the bloodstream to reach epithelial tissues that are more difficult to access, for example the mucous membranes in the mouth or bowels. Often in “butterfly children” with milder forms of the disease, only certain areas of the skin are affected. The skin stem cell therapy with local injections successfully tested on mice could lead to a valuable treatment method in the very near future.

The project conducted by IMBA scientists was initiated by the patient organization DEBRA Austria, and has had the financial support of the association and of other generous supporters since 2009. DEBRA's mission is to ensure that “butterfly children” receive competent specialized medical care and to promote research into options to relieve and cure EB. Further thanks also go to our funding and cooperation partners „Österreichische Lotterien“ and „FK Austria Wien“.

Original publication:
Wenzel et. al., iPSC-based cell therapy for Recessive Dystrophic Epidermolysis Bullosa. Science Translational Medicine. 2014.

Scientific Contact:
Dr. Arabella Meixner, Research Lead
Tel. +43 664 2018084
arabella.meixner@imba.oeaw.ac.at


Weitere Informationen:

http://www.imba.oeaw.ac.at

Evelyn Devuyst | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>