Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some trees 'farm' bacteria to help supply nutrients

30.07.2010
Some trees growing in nutrient-poor forest soil may get what they need by cultivating specific root microbes to create compounds they require. These microbes are exceptionally efficient at turning inorganic minerals into nutrients that the trees can use. Researchers from France report their findings in the July 2010 issue of the journal Applied and Environmental Microbiology.

"In acidic forest soils, availability of inorganic nutrients is a tree-growth-limiting factor. A hypothesis to explain sustainable forest development proposes that tree roots select soil microbes involved in central biogeochemical processes, such as mineral weathering, that may contribute to nutrient mobilization and tree nutrition," says Stéphane Uroz, an author on the study.

Certain microbes are efficient at breaking down inorganic minerals into nutrients. This process, called mineral weathering, is especially important in acidic forest soils where tree growth can be limited by access to these nutrients. Mineral-weathering bacteria can release necessary nutrients such as iron from soil minerals. This gives trees with increased concentrations of mineral-weathering microbes an advantage over other trees.

Distinct impacts of the tree species on the soil bacterial community structure have been previously reported, suggesting that the composition and activity of soil bacterial communities depend on tree physiology and notably on its impact on the soil physicochemical properties and nutrient cycling. However, no study has ever addressed the question of the impact of tree species on the structure of forest soil bacterial communities involved in mineral weathering.

"This question regarding the impact of tree species on the functional diversity of the bacterial communities remains a major issue in forestry, especially in the context of today's climate change, which will give rise to a shift in the spatial distribution of forest tree species" says Uroz.

The researchers took soil samples from the root areas of beech, oak and Norway spruce trees and cultured them to determine the bacterial populations. They observed heightened levels of mineral-weathering bacteria in the samples near the roots of oak and beech trees compared to surrounding soil samples. This difference was not seen in the Norway spruce samples.

"Our results suggest that certain tree species have developed indirect strategies for mineral weathering in nutrient-poor soils, which lie in the selection of bacterial communities with efficient mineral weathering potentials" says Uroz.

Garth Hogan | EurekAlert!
Further information:
http://www.asmusa.org

Further reports about: Norway chemical process forest soils soil bacteria tree species

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>