Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Treatment for Stroke?

14.09.2012
Ceria nanoparticles could lessen the damage from ischemic strokes

The most common form of strokes are caused by a sudden reduction in blood flow to the brain (ischemia) that leads to an inadequate supply of oxygen and nutrients. These so-called ischemic strokes are one of the leading causes of death and disability in industrialized nations.



If they are not immediately remedied by medical intervention, areas of the brain may die off. In the journal Angewandte Chemie, Korean researchers have now proposed a new approach for supplemental treatment: Ceria nanoparticles could trap the reactive oxygen compounds that result from ischemia and cause cells to die.

When blood flow to areas of the brain is restricted, reactive oxygen compounds like superoxide radical anions (O2• –), hydrogen peroxide (H2O2), and hydroxyl radicals (HO• –) form and accumulate. These species cause oxidative damage and are responsible for tissue damage and cell death during a stroke. Nerve connections and neurovascular units are destroyed and the function of the brain in these areas stops. Despite various treatments that primarily combat the causes of reduced blood flow, such as thrombosis, there has been no way to protect nerves from oxidative damage after an acute ischemic stroke. Seung-Hoon Lee, Taeghwan Hyeon, and their team at Seoul National University hope that nanoparticles made of ceria may represent a new approach for treatment.

Cells contain enzymes that can break down reactive oxygen species: superoxide dismutases, which convert superoxide anions to hydrogen peroxide; and catalase, which splits hydrogen peroxide. Ceria nanoparticles can do both. How does this work? The cerium in ceria crystals is present in the form of Ce4+. However, if the particle size is reduced to a few nanometers in diameter, some spots on the surface are missing oxygen atoms. These places have Ce3+ instead, which can easily be reduced back to Ce4+ and can reversibly bind oxygen.

The researchers treated cell cultures with a substance that increases the concentrations of reactive oxygen species, which leads to increased cell death. Treatment with cerium oxide nanoparticles drastically improved the cell survival rate. In animal trials, the researchers induced ischemic strokes in rats. Intravenously administered ceria nanoparticles considerably reduced the stroke volume and nerve damage. An optimized, carefully balanced dose is necessary, however.

Interestingly, the concentrations of ceria nanoparticles in the healthy areas of the brain were very low, while those in the ischemic areas were drastically elevated. The researchers speculate that the ceria nanoparticles can barely pass through the intact blood-brain barrier. However, the barrier is damaged in the ischemic areas, allowing the diseased areas of the brain to be reached and oxidative damage to be stopped.

About the Author
Taeghwan Hyeon is a SNU Distinguished Fellow (Distinguished University Professor) of the School of Chemical and Biological Engineering of Seoul National University (SNU). Since 1997, his research has been focused on the synthesis and applications of uniform-sized nanoparticles. In June 2012, he was appointed as a Director of the Center for Nanoparticle Research, Institute for Basic Science (IBS).

Author: Taeghwan Hyeon, Seoul National University (Korea), http://nanomat.snu.ac.kr/index.php?mid=Director

Title: Ceria Nanoparticles that Protect against Ischemic Stroke
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201203780

Taeghwan Hyeon | Angewandte Chemie
Further information:
http://pressroom.angewandte.org.

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>