Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Treatment for Stroke?

14.09.2012
Ceria nanoparticles could lessen the damage from ischemic strokes

The most common form of strokes are caused by a sudden reduction in blood flow to the brain (ischemia) that leads to an inadequate supply of oxygen and nutrients. These so-called ischemic strokes are one of the leading causes of death and disability in industrialized nations.



If they are not immediately remedied by medical intervention, areas of the brain may die off. In the journal Angewandte Chemie, Korean researchers have now proposed a new approach for supplemental treatment: Ceria nanoparticles could trap the reactive oxygen compounds that result from ischemia and cause cells to die.

When blood flow to areas of the brain is restricted, reactive oxygen compounds like superoxide radical anions (O2• –), hydrogen peroxide (H2O2), and hydroxyl radicals (HO• –) form and accumulate. These species cause oxidative damage and are responsible for tissue damage and cell death during a stroke. Nerve connections and neurovascular units are destroyed and the function of the brain in these areas stops. Despite various treatments that primarily combat the causes of reduced blood flow, such as thrombosis, there has been no way to protect nerves from oxidative damage after an acute ischemic stroke. Seung-Hoon Lee, Taeghwan Hyeon, and their team at Seoul National University hope that nanoparticles made of ceria may represent a new approach for treatment.

Cells contain enzymes that can break down reactive oxygen species: superoxide dismutases, which convert superoxide anions to hydrogen peroxide; and catalase, which splits hydrogen peroxide. Ceria nanoparticles can do both. How does this work? The cerium in ceria crystals is present in the form of Ce4+. However, if the particle size is reduced to a few nanometers in diameter, some spots on the surface are missing oxygen atoms. These places have Ce3+ instead, which can easily be reduced back to Ce4+ and can reversibly bind oxygen.

The researchers treated cell cultures with a substance that increases the concentrations of reactive oxygen species, which leads to increased cell death. Treatment with cerium oxide nanoparticles drastically improved the cell survival rate. In animal trials, the researchers induced ischemic strokes in rats. Intravenously administered ceria nanoparticles considerably reduced the stroke volume and nerve damage. An optimized, carefully balanced dose is necessary, however.

Interestingly, the concentrations of ceria nanoparticles in the healthy areas of the brain were very low, while those in the ischemic areas were drastically elevated. The researchers speculate that the ceria nanoparticles can barely pass through the intact blood-brain barrier. However, the barrier is damaged in the ischemic areas, allowing the diseased areas of the brain to be reached and oxidative damage to be stopped.

About the Author
Taeghwan Hyeon is a SNU Distinguished Fellow (Distinguished University Professor) of the School of Chemical and Biological Engineering of Seoul National University (SNU). Since 1997, his research has been focused on the synthesis and applications of uniform-sized nanoparticles. In June 2012, he was appointed as a Director of the Center for Nanoparticle Research, Institute for Basic Science (IBS).

Author: Taeghwan Hyeon, Seoul National University (Korea), http://nanomat.snu.ac.kr/index.php?mid=Director

Title: Ceria Nanoparticles that Protect against Ischemic Stroke
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201203780

Taeghwan Hyeon | Angewandte Chemie
Further information:
http://pressroom.angewandte.org.

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>