Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better Treatment for Lead Poisoning Coming Soon?

15.01.2009
Removing lead from blood with selective lead receptors and magnetic nanoparticles

Lead is one of the most dangerous heavy metals and is especially toxic to children. Safe and effective detoxification processes are needed. As reported in the journal Angewandte Chemie, a Korean team led by Won Seok Han and Jong Hwa Jung has developed a new, highly promising approach.

It is based on a fluorescence receptor that selectively and strongly binds to lead ions. The trick: the receptor is bound to magnetic nanoparticles and can be removed, along with their lead cargo, in a simple hemodialysis procedure using magnets. By using these magnetic particles, the researchers were able to remove 96 % of the lead ions from blood samples mixed with lead in vitro.

Lead and lead salts are mainly ingested in foods or drinking water. Lead pipes and lead-containing glazes on ceramic vessels are often a source of lead. Usually, it is not acute lead poisoning that occurs, but rather gradual lead poisoning, in which smaller amounts of the metal are accumulated over a long period of time.

Symptoms such as muscle weakness, disorientation, memory loss, and anemia are the result. Currently, lead poisoning is treated with chelation therapy, which has serious side effects: the chelates bind to other minerals and trace elements as well as lead, removing these vital materials from the body as well. Now an alternative is on the horizon.

The researchers’ idea starts with special probes used for the detection of various specific metal ions, including lead. When a lead ion binds to such a “lead receptor”, the receptor’s fluorescence is “switched on”, causing it to glow. The receptor binds to no other metal ions, only lead. Perhaps a selective lead detector could be used for detoxification, as well as detection. The scientists synthesized a derivative of such a lead detector and also equipped the molecule with a special chemical “anchor”. They used this anchor to attach the receptor molecules to the surface of magnetic nanoparticles made of silicon-dioxide-coated nickel.

Detoxification could theoretically work like hemodialysis: the blood is diverted out of the body and into a special chamber containing the biocompatible magnetic particles. By using magnetic fields, the charged magnetic particles could be fished out. The purified blood is then reintroduced to the patient. In contrast to chelation therapy, no vital minerals or trace elements would be removed from the body in this process.

Author: Jong Hwa Jung, Gyeongsang National University, Jinju (Korea), mailto:jonghwa@gnu.ac.kr

Title: A Selective Fluoroionophore Based on BODIPY-functionalized Magnetic Silica Nanoparticles: Removal of Pb2+ from Human Blood

Angewandte Chemie International Edition 2009, 48, No. 7, doi: 10.1002/anie.200804714

Jong Hwa Jung | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>