Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better Treatment for Lead Poisoning Coming Soon?

15.01.2009
Removing lead from blood with selective lead receptors and magnetic nanoparticles

Lead is one of the most dangerous heavy metals and is especially toxic to children. Safe and effective detoxification processes are needed. As reported in the journal Angewandte Chemie, a Korean team led by Won Seok Han and Jong Hwa Jung has developed a new, highly promising approach.

It is based on a fluorescence receptor that selectively and strongly binds to lead ions. The trick: the receptor is bound to magnetic nanoparticles and can be removed, along with their lead cargo, in a simple hemodialysis procedure using magnets. By using these magnetic particles, the researchers were able to remove 96 % of the lead ions from blood samples mixed with lead in vitro.

Lead and lead salts are mainly ingested in foods or drinking water. Lead pipes and lead-containing glazes on ceramic vessels are often a source of lead. Usually, it is not acute lead poisoning that occurs, but rather gradual lead poisoning, in which smaller amounts of the metal are accumulated over a long period of time.

Symptoms such as muscle weakness, disorientation, memory loss, and anemia are the result. Currently, lead poisoning is treated with chelation therapy, which has serious side effects: the chelates bind to other minerals and trace elements as well as lead, removing these vital materials from the body as well. Now an alternative is on the horizon.

The researchers’ idea starts with special probes used for the detection of various specific metal ions, including lead. When a lead ion binds to such a “lead receptor”, the receptor’s fluorescence is “switched on”, causing it to glow. The receptor binds to no other metal ions, only lead. Perhaps a selective lead detector could be used for detoxification, as well as detection. The scientists synthesized a derivative of such a lead detector and also equipped the molecule with a special chemical “anchor”. They used this anchor to attach the receptor molecules to the surface of magnetic nanoparticles made of silicon-dioxide-coated nickel.

Detoxification could theoretically work like hemodialysis: the blood is diverted out of the body and into a special chamber containing the biocompatible magnetic particles. By using magnetic fields, the charged magnetic particles could be fished out. The purified blood is then reintroduced to the patient. In contrast to chelation therapy, no vital minerals or trace elements would be removed from the body in this process.

Author: Jong Hwa Jung, Gyeongsang National University, Jinju (Korea), mailto:jonghwa@gnu.ac.kr

Title: A Selective Fluoroionophore Based on BODIPY-functionalized Magnetic Silica Nanoparticles: Removal of Pb2+ from Human Blood

Angewandte Chemie International Edition 2009, 48, No. 7, doi: 10.1002/anie.200804714

Jong Hwa Jung | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>