Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New treatment could combat deadly chemical agents

14.01.2013
An enzyme treatment which could neutralise the effects of lethal chemicals responsible for the deaths of hundreds of thousands of people across the world has been developed by experts at the University of Sheffield.
Organophosphorus agents (OP) are used as pesticides in developing countries and acute poisoning is common because of insufficient control, poor storage, ready availability, and inadequate education amongst farmers.

It is estimated about 200,000 people die each year across the world from OP poisoning, through occupational exposure, unintentional use and misuse, mostly in developing countries like India, Pakistan, and Sri Lanka and through deliberate terrorist activities.

OPs include compounds like Tabun, which was developed in 1936 by German scientists during World War II, Sarin, Soman, Cyclosarin, VX, and VR.

Using a modified human enzyme, scientist Professor Mike Blackburn from the University of Sheffield’s Department of Molecular Biology and Biotechnology collaborated in a consultancy role with Professor Alexander Gabibov of the Shemyakin-Ovchinnikov Institute, Moscow, and Professor Patrick Masson of the Département de Toxicologie, Centre de Recherches du Service de Santé des Armées, to create a “bioscavenger” which was found to protect mice against the nerve agent VR and showed no lasting effects.

In studies performed at the Institute of Bioorganic Chemistry in Pushchino, Russia, a total of eight mice were treated with the new enzyme after being subjected to enough of the VR agent to kill several of the animals – about 63 mg per kg – and all survived.

Professor Blackburn said: “This current publication describes a novel method to generate a bioscavenger for the Russian VR organophosphorus agent with the key property of being long-acting in the bloodstream.

“That has been achieved by a combination of chemical surface modification (polysialylation) and biotechnology of production (through the use of an in vitro CHO-based expression system employing genes encoding butyrylcholinesterase and a proline-rich peptide under special promoter control).

The research has been published in the journal PNAS.

Additional information

To view the paper online visit: http://www.pnas.org/cgi/doi/10.1073/pnas.1211118110

The University of Sheffield

With nearly 25,000 students from 125 countries, the University of Sheffield is one of the UK’s leading and largest universities. A member of the Russell Group, it has a reputation for world-class teaching and research excellence across a wide range of disciplines. The University of Sheffield was named University of the Year in the Times Higher Education Awards 2011 for its exceptional performance in research, teaching, access and business performance. In addition, the University has won four Queen’s Anniversary Prizes (1998, 2000, 2002, and 2007).

These prestigious awards recognise outstanding contributions by universities and colleges to the United Kingdom’s intellectual, economic, cultural and social life. Sheffield also boasts five Nobel Prize winners among former staff and students and many of its alumni have gone on to hold positions of great responsibility and influence around the world. The University’s research partners and clients include Boeing, Rolls-Royce, Unilever, Boots, AstraZeneca, GSK, ICI, Slazenger, and many more household names, as well as UK and overseas government agencies and charitable foundations.

The University has well-established partnerships with a number of universities and major corporations, both in the UK and abroad. Its partnership with Leeds and York Universities in the White Rose Consortium has a combined research power greater than that of either Oxford or Cambridge.

For further information please contact:

Paul Mannion
Media relations officer
The University of Sheffield
0114 222 9851
p.f.mannion@sheffield.ac.uk

Paul Mannion | EurekAlert!
Further information:
http://www.sheffield.ac.uk
http://shef.ac.uk/news/nr/ensyme-neutralise-lethal-chemical-organophosphorus-agent-1.235736

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>