Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Treatment approach to human Usher syndrome: Small molecules ignore stop signals

01.07.2011
New treatment approach shall soon be ready for use in Usher syndrome patients

Usher syndrome is the most common form of combined congenital deaf-blindness in humans and affects 1 in 6,000 of the population. It is a recessive inherited disease that is both clinically and genetically heterogeneous.

In the most severe cases, patients are born deaf and begin to suffer from a degeneration of the retina in puberty, ultimately resulting in complete blindness. These patients experience major problems in their day-to-day life.

While hearing loss can be compensated for with hearing aids and cochlea implants, it has not proven possible to develop a treatment for the associated sight loss to date. Researchers at Johannes Gutenberg University Mainz (JGU) in Germany have now developed a new treatment approach to this disease.

In previously conducted research into this subject, the research team headed by Professor Uwe Wolfrum of the Institute of Zoology at Mainz University had already gained insight into of the fundamental molecular processes and mechanisms causing this debilitating syndrome. Using the results of this successful basic research, the Usher treatment team in Mainz headed by Dr Kerstin Nagel-Wolfrum has now evaluated potential ocular treatment options.

Their attention was focused on a mutation identified in a specific German family known to develop the most severe form of Usher syndrome. This mutation is a so-called nonsense mutation in the USH1C gene, which leads to the generation of a stop signal in a DNA base, resulting in premature termination of protein synthesis.

The Mainz research team has now published its latest work on pharmacogenetic strategies for the treatment of Usher syndrome patients with nonsense mutations in the May edition of the journal "Human Gene Therapy". The researchers were able to show that a small molecule known as PTC124 (Ataluren®) causes the stop signal in the mutated USH1C gene to be ignored, thus resulting in continuing protein synthesis and the formation of the functional genetic product in cell and organ cultures. In addition to its ability to cause readthrough of stop signals, the active agent PTC124 has also been demonstrated to be highly compatible with murine and human retina cultures. Moreover, the team managed for the first time to demonstrate readthrough of an eye mutation codon in vivo.

"PTC124 is already being tested in clinical trials for its efficacy in treating other diseases involving nonsense mutations, such as cystic fibrosis and Duchenne muscular dystrophy. We therefore hope that this treatment approach will soon be ready for use in Usher syndrome patients," explains Dr Kerstin Nagel-Wolfrum.

Currently putting the finishing touches on his doctoral thesis, Tobias Goldmann is comparing the efficiency of the readthrough rate and the biocompatibility of other molecules that induce the readthrough of nonsense mutations. The focus is particularly on modified aminoglycosides, i.e. derivatives of commercially available and clinically tested antibiotics. These are being designed and synthesized by an Israeli cooperation partner, Professor Timor Bassov of the Haifa Technicon, and have already been successfully used by researchers in Mainz for readthrough of nonsense mutations in Usher genes. In addition to conducting further preclinical studies of the ocular applications of these new substances, the Usher laboratory in Mainz is planning to use this new method of treating this specific form of Usher syndrome in hospital patients as soon as possible.

The translational biomedical research on readthrough of nonsense mutations aimed at developing a treatment for Usher syndrome is being funded by the FAUN foundation and the "Syscilia" project of the Seventh Framework Program of the European Union. It is part of the Research Training Group 1044 "Developmental and Disease-Induced Modifications of the Nervous System," funded by the German Research Foundation (DFG). The group has recently joined the Translational Neurosciences Research Focus of Johannes Gutenberg University Mainz.

PUBLICATIONS:

Goldmann T., Overlack N., Wolfrum U., Nagel-Wolfrum K. (2011): PTC124-Mediated Translational Readthrough of a Nonsense Mutation Causing Usher Syndrome Type 1C. Human Gene Therapy 22:537-547.

DOI: 10.1089/hum.2010.067

Goldmann T., Rebibo-Sabbah A., Overlack N., Nudelman I., Belakhov V., Baasov T., Ben-Yosef T., Wolfrum U., Nagel-Wolfrum K. (2010): Beneficial Read-Through of a USH1C Nonsense Mutation by Designed Aminoglycoside NB30 in the Retina. Investigative Ophthalmology & Visual Science 51:6671-80.

DOI: 10.1167/iovs.10-5741

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/14329.php
http://www.ag-wolfrum.bio.uni-mainz.de

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>