Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Treating ovarian cancer: New pathways through genetics

25.09.2012
Montreal-based researchers discover genetics secrets of ovarian cancer tumors

A new discovery that sheds light on the genetic make up of ovarian cancer cells could explain why some women survive longer than others with this deadly disease.

A multi-disciplinary team led by the Research Institute of the McGill University Health Centre (RI MUHC), in collaboration with the Lady Davis Institute of the Jewish General Hospital and the University of Montreal Hospital Research Centre, has identified genetic patterns in ovarian cancer tumours that help to differentiate patients based on the length of their survival after initial surgery. The study was published in the journal PLOS ONE.

"We discovered genetic differences in the tumours from ovarian cancer patients that relate to their short-term and overall response to standard treatment," explained Dr. Patricia Tonin, the study's lead author and a cancer researcher at the RI MUHC and Associate Professor of the Department of Medicine at McGill University. "Using these genetic 'tools' to examine the tumours removed in the initial surgery, we may be able to offer alternative therapeutic options to women to improve their outcome."

Each year 2,000 new cases of ovarian cancer are reported in Canada, and in 75 per cent of these cases the women die less than five years after their diagnosis. This study focused on the genetic analysis of high grade serous ovarian carcinomas (HGSC) in women from Quebec – the deadliest type of ovarian cancer which accounts for 90 per cent of deaths.

Almost all women with HGSC have mutations in the gene TP53, which is responsible for making the p53 protein. This gene is known as the "guardian of the genome" because of its role in regulating cell division and thus preventing cancer. Scientists already knew there were two different types of tumours, some with TP53 mutations that produce a mutant p53 protein and others without.

By uncovering the existence of genetic differences between the two types of HGSCs, the study reinforces the idea that there are biological differences in these cancers that can be related to the nature of the TP53 mutation and differences in genetic markers. The research team also confirmed that patient survival was longer in cases with the mutant p53 protein, compared to those that without the mutant protein.

"Biology is showing us which direction to take," enthused Dr. Tonin. "This unique finding paves the way for identifying the pathways involved in cancer progression, leading to the development of alternative therapies and therefore helping to reduce morbidity and mortality in women fighting the disease".

Click here to access the study online
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0045484
Funding
This work was funded by the Fonds de recherche du Québec-Santé (FRQS), the Terry Fox Research Institute (TFRI), Weekend to End Women's Cancer through the Lady Davis Institute for Medical Research at the Jewish General Hospital and the Canadian Institutes of Health Research (CIHR).

Research partners

The study "The Genomic Landscape of TP53 and p53 Annotated High Grade Ovarian Serous Carcinomas from a Defined Founder Population Associated with Patient Outcome" was co-authored by Paulina M Wojnarowicz, Karen Gambaro and Ashley H Birch of McGill University; Kathleen Klein Oros of the Lady Davis Institute, Jewish General Hospital; Michael CJ Quinn, Jason Madore and Manon de Ladurantaye of the University of Montreal Hospital Research Centre (CRCHUM), Institut du cancer de Montréal; Suzanna L Arcand of the Research Institute of the McGill University Health Centre (RI MUHC); Kurosh Rahimi of the CHUM; Diane M Provencher of CRCHUM and Université de Montréal; Anne-Marie Mes-Masson of CRCHUM and Université de Montréal; Celia MT Greenwood of the Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, and McGill University and Patricia N Tonin of the RI MUHC and McGill University.

Useful links

Research Institute of the MUHC: muhc.ca/research
McGill University Health Centre (MUHC): muhc.ca
McGill University: mcgill.ca
PLOS ONE: plosone.org
Media
Julie Robert
Communications – Research
Public Affairs & Strategic Planning
McGill University Health Centre
Phone: 514-934-1934 (ext. 71381)
julie.robert@muhc.mcgill.ca

Julie Robert | EurekAlert!
Further information:
http://www.muhc.mcgill.ca

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>