Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Treating ovarian cancer: New pathways through genetics

25.09.2012
Montreal-based researchers discover genetics secrets of ovarian cancer tumors

A new discovery that sheds light on the genetic make up of ovarian cancer cells could explain why some women survive longer than others with this deadly disease.

A multi-disciplinary team led by the Research Institute of the McGill University Health Centre (RI MUHC), in collaboration with the Lady Davis Institute of the Jewish General Hospital and the University of Montreal Hospital Research Centre, has identified genetic patterns in ovarian cancer tumours that help to differentiate patients based on the length of their survival after initial surgery. The study was published in the journal PLOS ONE.

"We discovered genetic differences in the tumours from ovarian cancer patients that relate to their short-term and overall response to standard treatment," explained Dr. Patricia Tonin, the study's lead author and a cancer researcher at the RI MUHC and Associate Professor of the Department of Medicine at McGill University. "Using these genetic 'tools' to examine the tumours removed in the initial surgery, we may be able to offer alternative therapeutic options to women to improve their outcome."

Each year 2,000 new cases of ovarian cancer are reported in Canada, and in 75 per cent of these cases the women die less than five years after their diagnosis. This study focused on the genetic analysis of high grade serous ovarian carcinomas (HGSC) in women from Quebec – the deadliest type of ovarian cancer which accounts for 90 per cent of deaths.

Almost all women with HGSC have mutations in the gene TP53, which is responsible for making the p53 protein. This gene is known as the "guardian of the genome" because of its role in regulating cell division and thus preventing cancer. Scientists already knew there were two different types of tumours, some with TP53 mutations that produce a mutant p53 protein and others without.

By uncovering the existence of genetic differences between the two types of HGSCs, the study reinforces the idea that there are biological differences in these cancers that can be related to the nature of the TP53 mutation and differences in genetic markers. The research team also confirmed that patient survival was longer in cases with the mutant p53 protein, compared to those that without the mutant protein.

"Biology is showing us which direction to take," enthused Dr. Tonin. "This unique finding paves the way for identifying the pathways involved in cancer progression, leading to the development of alternative therapies and therefore helping to reduce morbidity and mortality in women fighting the disease".

Click here to access the study online
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0045484
Funding
This work was funded by the Fonds de recherche du Québec-Santé (FRQS), the Terry Fox Research Institute (TFRI), Weekend to End Women's Cancer through the Lady Davis Institute for Medical Research at the Jewish General Hospital and the Canadian Institutes of Health Research (CIHR).

Research partners

The study "The Genomic Landscape of TP53 and p53 Annotated High Grade Ovarian Serous Carcinomas from a Defined Founder Population Associated with Patient Outcome" was co-authored by Paulina M Wojnarowicz, Karen Gambaro and Ashley H Birch of McGill University; Kathleen Klein Oros of the Lady Davis Institute, Jewish General Hospital; Michael CJ Quinn, Jason Madore and Manon de Ladurantaye of the University of Montreal Hospital Research Centre (CRCHUM), Institut du cancer de Montréal; Suzanna L Arcand of the Research Institute of the McGill University Health Centre (RI MUHC); Kurosh Rahimi of the CHUM; Diane M Provencher of CRCHUM and Université de Montréal; Anne-Marie Mes-Masson of CRCHUM and Université de Montréal; Celia MT Greenwood of the Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, and McGill University and Patricia N Tonin of the RI MUHC and McGill University.

Useful links

Research Institute of the MUHC: muhc.ca/research
McGill University Health Centre (MUHC): muhc.ca
McGill University: mcgill.ca
PLOS ONE: plosone.org
Media
Julie Robert
Communications – Research
Public Affairs & Strategic Planning
McGill University Health Centre
Phone: 514-934-1934 (ext. 71381)
julie.robert@muhc.mcgill.ca

Julie Robert | EurekAlert!
Further information:
http://www.muhc.mcgill.ca

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>