Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trapping insects by color: Will it work in Montana?

02.01.2014
Red and green traps attract more sweetpotato weevils than other colors, and a Montana State University researcher who made that discovery wants to know if Montana insects react the same way.

Gadi V.P. Reddy, superintendent and entomologist/ecologist at MSU's Western Triangle Agricultural Research Center at Conrad, said the lessons he learned in Guam and published in the Jan. 2 issue of the Annals of the Entomological Society of America will be tested on some of the major pests that destroy Montana's wheat, barley and canola.

Those insects include adult click beetles (wireworms), flea beetles and wheat stem sawfly. The wheat stem sawfly is the most destructive wheat pest in Montana. Wireworms -- tiny white larvae that turn into click beetles – are second only to wheat stem sawfly for insects that damage wheat and barley in Montana. Flea beetles target canola.

Reddy and his collaborators from the University of Guam (Nirupa Gadi, Rosalie Kikuchi, Jenelyn Batista and others) discovered the relationship between colors and trap effectiveness while developing a trapping system for the sweetpotato weevil. They used a variety of traps that used pheromones to attract the insects. Pheromones are chemicals that insects secrete or excrete to trigger a response in other insects of the same species.

Previous studies showed that the sweetpotato weevil, when outdoors, preferred red traps over gray, green, brown, blue, white, yellow or black, with light red being more attractive than other shades of red, so Reddy and his collaborators conducted a new study. That one was conducted indoors, to see if the weevils reacted any differently. Since the sweetpotato weevil is a pest in both the field (outdoors) and storage (indoors), Reddy said the results are useful in managing the weevil pests.

The scientists discovered that red traps are best when the weevils are outdoors and green traps are most effective when sweetpotato weevils are inside warehouses, greenhouses or other covered spaces. With or without pheromone lures, green traps caught significantly more adult sweetpotato weevils than traps of any other color.

The scientists don't know why color makes a difference, but they will pursue that question in future studies, Reddy said, noting that insects use chromatic cues to identify colors. In the meantime, he has already started testing different colored traps in Montana.

Montana doesn't grow sweet-potatoes and its insects are different from those found in Guam, but the technology to trap them is the same, said Reddy who came to MSU from Guam in June 2012.

Sweet-potatoes are a six-month crop grown in the southern United States, Guam, Hawaii, China and many other areas of the world. The sweetpotato weevil, Cylas formicarius, is one of the most serious insects causing damage to sweet-potatoes in the world, Reddy and Gadi said in their newly published paper. They added that without proper and effective control, weevil populations are likely to cause a huge or complete loss of sweetpotato production in sweetpotato growing areas.

Crop damage can range from 30 to 40 percent in the United States to 60 or 70 percent in Guam, to 70 to 100 percent in some African countries, such as Uganda and Nigeria, Reddy said.

"Consequently, there is an urgent need for development of eco-friendly control methods for this weevil," Reddy and Gadi wrote in their paper. "Although some control methods are effective, toxic pesticides applications are detrimental and damaging to our environment. Although pheromone traps are currently being used, no effective control of this weevil was achieved."

Annals of the Entomological Society of America is published by the Entomological Society of America, the largest organization in the world serving the professional and scientific needs of entomologists and people in related disciplines. The ESA has more than 6,500 members affiliated with educational institutions, health agencies, private industry, and government. Members are researchers, teachers, Extension service personnel, administrators, marketing representatives, research technicians, consultants, students and hobbyists.

Evelyn Boswell | EurekAlert!
Further information:
http://www.montana.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>