Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trapped in a ring - Ring-like protein complex helps ensure accurate protein production

20.02.2012
Published online in Nature Structural & Molecular Biology on 19 February 2012

In fairy tales, magic rings endow their owners with special abilities: the ring makes the wearer invisible, fulfils his wishes, or otherwise helps the hero on the path to his destiny.


The ring-like part of Elongator that holds tRNA in place is formed by three proteins (brown, green, blue) paired up in two trios. ©EMBL/S.Glatt

Similarly, a ring-like structure found in a protein complex called ‘Elongator’ has led researchers at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and the Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC) in Strasbourg, France, in exciting new directions. Published today in Nature Structural & Molecular Biology, the first three-dimensional structure of part of this complex provides new clues to its tasks inside the cell and to its role in neurodegenerative diseases.

Changes to the proteins that make up Elongator have been linked to disorders such as familial dysautonomia and childhood epilepsy, and scientists knew that the complex is involved in a variety of processes inside the cell, but exactly what it does has so far remained a mystery.

Elongator is composed of 6 different proteins. Scientists in Christoph Müller’s lab at EMBL and Bertrand Séraphin’s lab at IGBMC looked at three of these proteins, which are known to work together. They discovered that, instead of just clumping together as a trio, these proteins team up in two identical trios to form a ring. This unexpected structure sparked new thoughts. It suggested that the ring’s job in the Elongator complex might be similar to that of other protein complexes, called helicases, which use ring-like structures made out of six copies of the same protein to bind to DNA or RNA.

The researchers found only one molecule that slots into Elongator’s ring: tRNA. tRNA transports amino acids to the ‘factories’ in the cell where they will be stitched together into a protein according to the instructions spelled out in the cell’s DNA. It seems that Elongator’s protein ring holds the tRNA in place while other parts of the Elongator complex work on it, introducing a chemical modification which ultimately ensures that the DNA is accurately converted into protein. The findings also suggest that, once work on the tRNA is complete, a different molecule, ATP, is broken down on the outer margin of the ring. This, the scientists believe, would subtly alter the shape of the ring’s proteins, releasing the tRNA and allowing the whole process to start again.

Next, Müller, Séraphin and colleagues would like to investigate what tools and tricks other parts of Elongator employ to help the whole complex perform its tasks inside the cell.

Published online in Nature Structural & Molecular Biology on 19 February 2012. DOI: 10.1038/nsmb.2234

Deutsch Kontakt:
Angela Michel
Meyerhofstr. 1, 69117 Heidelberg, Deutschland
Tel.: +49 (0)6221 387 8443
Fax: +49 (0)6221 387 8525
michel@embl.de
Sonia Furtado Neves
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de

Sonia Furtado Neves | EMBL Research News
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>