Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Trap Snaps Shut

08.11.2010
Researchers isolate the substance that causes Venus flytraps to close

The Venus flytrap is a carnivorous plant luring insect prey with drops of liquid. The trap snaps shut like a steel jaw when an insect touches one of the very fine hairs within.


The prey is caught – digestion begins. Minoru Ueda and a research team from the Universities of Tohoku, Hirosaki, and Hiroshima (Japan) have now found chemicals that trigger the trap to snap shut.

As the scientists report in the journal ChemBioChem, when these substances are applied to the plants, the traps close even without stimulation of the sensory hairs.

The Venus flytrap has a “memory”. In order to avoid reacting to a “false alarm”, the plant does not snap shut at the first touch of the sensory hairs. Instead, there must be at least two stimulations of the hairs within 30 seconds. After that, the trap closes fast so that the prey cannot make a last-gasp escape. How does the trap’s memory work?

The hypothesis is that certain messenger chemicals are released every time the hairs are stimulated, and these substances accumulate in the trap. Only when these substances reach a certain threshold concentration does an ion channel open – like the mechanism used to transmit signals in our nerve cells—producing an action potential that allows the leaves of the trap to shut.

The researchers cloned a strain of genetically uniform Venus flytraps. They used these to make an extract, and separated out various fractions of this extract. They cut off individual traps and placed them with their stems in solutions of the various fractions of the extract. The partial plants were able to soak up the liquid. Some fractions triggered the traps to snap shut without stimulation of the sensory hairs. The scientists used various methods to further separate the active fractions and tested the new fractions again. In the end, the researchers were able to isolate two substances, termed “trap-closing factors”, which trigger the traps to snap shut. One of these substances was identified by means of various analytical techniques. The active substance was found to be the potassium salt of a glucose-containing derivative of jasmonic acid, a common plant hormone. The second substance has a higher molecular mass. It consists of many different sugar components that have not yet been completely identified because the substance has only been isolated in very small amounts.

Experiments with different concentrations and amounts of messenger-containing solutions revealed that the closing of the traps does not depend on a specific concentration of the trigger substance, but on the overall amount of the substance that is absorbed. This supports the hypothesis that a threshold value must be reached to trigger the Venus flytrap to snap shut.

Author: Minoru Ueda, Tohoku University, Sendai (Japan), http://www.chem.tohoku.ac.jp/english/laboratories/organic/organic_chemistry_e.html

Title: Trap-Closing Chemical Factors of the Venus Flytrap (Dionaea muscipulla Ellis)

ChemBioChem 2010, 11, No. 17, 2378–2383

Permalink to the article: http://dx.doi.org/10.1002/cbic.201000392

Minoru Ueda | Wiley-VCH
Further information:
http://www.wiley-vch.de
http://www.chem.tohoku.ac.jp/english/laboratories/organic/organic_chemistry_e.html

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>