Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Trap Snaps Shut

08.11.2010
Researchers isolate the substance that causes Venus flytraps to close

The Venus flytrap is a carnivorous plant luring insect prey with drops of liquid. The trap snaps shut like a steel jaw when an insect touches one of the very fine hairs within.


The prey is caught – digestion begins. Minoru Ueda and a research team from the Universities of Tohoku, Hirosaki, and Hiroshima (Japan) have now found chemicals that trigger the trap to snap shut.

As the scientists report in the journal ChemBioChem, when these substances are applied to the plants, the traps close even without stimulation of the sensory hairs.

The Venus flytrap has a “memory”. In order to avoid reacting to a “false alarm”, the plant does not snap shut at the first touch of the sensory hairs. Instead, there must be at least two stimulations of the hairs within 30 seconds. After that, the trap closes fast so that the prey cannot make a last-gasp escape. How does the trap’s memory work?

The hypothesis is that certain messenger chemicals are released every time the hairs are stimulated, and these substances accumulate in the trap. Only when these substances reach a certain threshold concentration does an ion channel open – like the mechanism used to transmit signals in our nerve cells—producing an action potential that allows the leaves of the trap to shut.

The researchers cloned a strain of genetically uniform Venus flytraps. They used these to make an extract, and separated out various fractions of this extract. They cut off individual traps and placed them with their stems in solutions of the various fractions of the extract. The partial plants were able to soak up the liquid. Some fractions triggered the traps to snap shut without stimulation of the sensory hairs. The scientists used various methods to further separate the active fractions and tested the new fractions again. In the end, the researchers were able to isolate two substances, termed “trap-closing factors”, which trigger the traps to snap shut. One of these substances was identified by means of various analytical techniques. The active substance was found to be the potassium salt of a glucose-containing derivative of jasmonic acid, a common plant hormone. The second substance has a higher molecular mass. It consists of many different sugar components that have not yet been completely identified because the substance has only been isolated in very small amounts.

Experiments with different concentrations and amounts of messenger-containing solutions revealed that the closing of the traps does not depend on a specific concentration of the trigger substance, but on the overall amount of the substance that is absorbed. This supports the hypothesis that a threshold value must be reached to trigger the Venus flytrap to snap shut.

Author: Minoru Ueda, Tohoku University, Sendai (Japan), http://www.chem.tohoku.ac.jp/english/laboratories/organic/organic_chemistry_e.html

Title: Trap-Closing Chemical Factors of the Venus Flytrap (Dionaea muscipulla Ellis)

ChemBioChem 2010, 11, No. 17, 2378–2383

Permalink to the article: http://dx.doi.org/10.1002/cbic.201000392

Minoru Ueda | Wiley-VCH
Further information:
http://www.wiley-vch.de
http://www.chem.tohoku.ac.jp/english/laboratories/organic/organic_chemistry_e.html

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>