Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why transplanted insulin cells die

28.08.2008
New research can enhance survival of islets transplants and improve treatment of type 1 diabetes. Transplantation of insulin-producing cell islets, so-called islets of langerhans is an appealing strategy for treatment of type 1 diabetes. But it turns out that these are short-lived, and the procedure needs to be repeated.

Now researchers at Linköping University and Uppsala University in Sweden can show that accumulation of protein aggregatess, amyloid, in the transplanted cells may be causing their death.

Until now it was not known why this insulin production ceases. The discovery now being published in The New England Journal of Medicine may change the course of diabetes research.

Transplant attempts have been carried out for more than 30 years. Hundreds of patients have had healthy insulin-producing islets of Langerhans recovered from the pancreas of donors. These transplants, which usually involve the injection of cell islets into the liver, normally go well, and the patients initially don't have to take insulin. But within a year or two years the insulin production will cease from the transplanted cells.

"We have studied this in mice, but it has naturally been difficult to do so in humans. Now we have had an opportunity to examine such transplants in an individual with type 1 diabetes," says Gunilla T. Westermark, assistant professor of cell biology at Linköping University.

In close to half of the cell islets examined, 43 percent, the researchers found lumps of amyloid.

"We previously know that amyloid production is a symptom of stress that leads to cell death in type 2 diabetes. Perhaps the same thing happens in a transplant, when cells are exposed to great stress," says Gunilla T. Westermark.

Interestingly, there were quite a few unaffected cell islets remaining in the liver. If we can prevent the production of amyloid at an early stage, these cells would be able to continue to produce insulin. One possible strategy is to create a drug; another would be to refine the methods used in transplants in order to reduce stress.

The report "Widespread amyloid deposition in transplanted human pancreatic islets" by Gunilla T. Westermark, Per Westermark, Christian Berne, and Olle Korsgren will appear in The New England Journal of Medicine on August 28.

Contact:
Gunilla T. Westermark,
cell phone: +46 (0)73-4245812.
Pressofficer Åke Hjelm: åka.hjelm@liu.se; +46-13 281 395

Åke Hjelm | idw
Further information:
http://www.vr.se
http://content.nejm.org/cgi/content/short/359/9/977

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>