Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why transplanted insulin cells die

28.08.2008
New research can enhance survival of islets transplants and improve treatment of type 1 diabetes. Transplantation of insulin-producing cell islets, so-called islets of langerhans is an appealing strategy for treatment of type 1 diabetes. But it turns out that these are short-lived, and the procedure needs to be repeated.

Now researchers at Linköping University and Uppsala University in Sweden can show that accumulation of protein aggregatess, amyloid, in the transplanted cells may be causing their death.

Until now it was not known why this insulin production ceases. The discovery now being published in The New England Journal of Medicine may change the course of diabetes research.

Transplant attempts have been carried out for more than 30 years. Hundreds of patients have had healthy insulin-producing islets of Langerhans recovered from the pancreas of donors. These transplants, which usually involve the injection of cell islets into the liver, normally go well, and the patients initially don't have to take insulin. But within a year or two years the insulin production will cease from the transplanted cells.

"We have studied this in mice, but it has naturally been difficult to do so in humans. Now we have had an opportunity to examine such transplants in an individual with type 1 diabetes," says Gunilla T. Westermark, assistant professor of cell biology at Linköping University.

In close to half of the cell islets examined, 43 percent, the researchers found lumps of amyloid.

"We previously know that amyloid production is a symptom of stress that leads to cell death in type 2 diabetes. Perhaps the same thing happens in a transplant, when cells are exposed to great stress," says Gunilla T. Westermark.

Interestingly, there were quite a few unaffected cell islets remaining in the liver. If we can prevent the production of amyloid at an early stage, these cells would be able to continue to produce insulin. One possible strategy is to create a drug; another would be to refine the methods used in transplants in order to reduce stress.

The report "Widespread amyloid deposition in transplanted human pancreatic islets" by Gunilla T. Westermark, Per Westermark, Christian Berne, and Olle Korsgren will appear in The New England Journal of Medicine on August 28.

Contact:
Gunilla T. Westermark,
cell phone: +46 (0)73-4245812.
Pressofficer Åke Hjelm: åka.hjelm@liu.se; +46-13 281 395

Åke Hjelm | idw
Further information:
http://www.vr.se
http://content.nejm.org/cgi/content/short/359/9/977

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>