Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transplant drug stimulates immune memory

23.06.2009
Rapamycin, a drug given to transplant recipients to suppress their immune systems, has a paradoxical effect on cells responsible for immune memory, scientists at the Emory Vaccine Center have discovered.

In experiments conducted in both mice and monkeys, rapamycin can stimulate the formation of memory CD8 T cells, which enable the immune system to respond faster and stronger to an infectious agent upon a second encounter.

The results were published online ahead of print June 21 in Nature. The finding means that doctors might be able to boost the effectiveness of vaccines with drugs that act similarly to rapamycin, says postdoctoral researcher Koichi Araki, PhD, who is first author.

Araki works in the laboratory of Rafi Ahmed, PhD, director of the Emory Vaccine Center and a Georgia Research Alliance Eminent Scholar.

Vaccination relies on memory T cells, survivors after the immune system produces an abundance of T cells to fight an infection or respond to a vaccine. Araki had been examining rapamycin's effects in mice infected with lymphocytic choriomeningitis virus (LCMV).

"Usually during the response to this virus, 90 percent of the CD8 T cells produced to fight an infection die after a few weeks. The memory cells are generated from the 10 percent that survive," he explains.

T cells come in both CD4 (helper) and CD8 (killer) forms, but scientists have found that CD8 T cells are more important for fighting LCMV.

When mice were treated with rapamycin, more CD8 T cells that react against LMCV survived, Araki found. Under the influence of rapamycin, the mice not only produced more memory T cells, but the cells had a greater ability to proliferate and respond upon a second exposure to LCMV.

Rapamycin's effects are "surprising and unexpected," Araki says. During a transient viral infection, the targets of the immune response eventually disappear, a situation markedly different from a transplant, Araki notes. That difference may have helped him recognize rapamycin's effects, he says.

Also, rapamycin's effects depend on the dose -- too high a dose will inhibit all T cells without regard to what type they are, he says.

Araki and Ahmed teamed up with Christian Larsen, MD, PhD, director of the Emory Transplant Center and chair of the Department of Surgery, to show that rapamycin had similar effects in rhesus macaques infected with vaccinia virus as in mice. That research was conducted at Emory's Yerkes National Primate Research Center.

Rapamycin, also called sirolimus, was approved by the FDA in 1999 for use after kidney transplants. It was discovered in a soil sample from Easter Island, whose Polynesian name is Rapa Nui.

Transplant patients usually don't take rapamycin by itself, so rapamycin's paradoxical effects may have been masked by other drugs, Larsen says.

For transplant patients, memory T cells can play a role in graft rejection, but they can also protect against infections.

"We are appreciating more and more that memory T cells respond differently to interventions than naïve T cells and we have to pay close attention to the situation of the individual patient," Larsen says.

Scientists at the Emory Vaccine Center continue to study how T cells decide whether to become memory cells, because of their importance in maintaining the immune response against chronic infections such as HIV and hepatitis C.

The effects of rapamycin were seen even if Araki gave animals rapamycin only for a week after the infection began, suggesting that the beginning of the infection was when T cells were deciding whether or not to become memory cells.

By using an inhibitory technique (RNA interference) on the genes known to be targeted by rapamycin, Araki was able to show that rapamycin is acting on the CD8 T cells and not on other cells with which they interact.

The research was supported by the National Institutes of Health.

Reference:

K. Araki, A.P. Turner, V.O. Shaffer, S. Gangappa, S. Keller, M.F. Bachmann, C.P. Larsen and R. Ahmed. mTOR regulates memory CD8 T cell differentiation. Nature page numbers (2009).

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service. Its components include the Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, and Rollins School of Public Health; Yerkes National Primate Research Center; Emory Winship Cancer Institute; and Emory Healthcare, the largest, most comprehensive health system in Georgia. Emory Healthcare includes: The Emory Clinic, Emory-Children's Center, Emory University Hospital, Emory University Hospital Midtown, Wesley Woods Center, Emory University Orthopaedics & Spine Hospital, the jointly owned Emory-Adventist Hospital, and EHCA, a limited liability company created with Hospital Corporation of America. EHCA includes two joint venture hospitals, Emory Eastside Medical Center and Emory Johns Creek Hospital. The Woodruff Health Sciences Center has a $2.3 billion budget, 18,000 employees, 2,500 full-time and 1,500 affiliated faculty, 4,300 students and trainees, and a $5.5 billion economic impact on metro Atlanta.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>