Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transparent zebrafish a must-see model for atherosclerosis

06.03.2009
We usually think of fish as a "heart-healthy" food. Now fish are helping researchers better understand how heart disease develops in studies that could lead to new drugs to slow disease and prevent heart attacks.

Scientists at the University of California, San Diego School of Medicine have done to laboratory zebrafish exactly what many people still do to themselves – added excess cholesterol to their diet. Because young zebrafish are transparent, researchers were able to see – literally – the development of plaques in the zebrafish blood vessels.

The study led by Yury I. Miller, MD, PhD, associate professor of medicine at UC San Diego School of Medicine will be published online March 5th in advance of print in the April issue of Circulation Research, published by the American Heart Association.

"The use of this transparent zebrafish model is a promising method to screen for new drugs and cardiovascular imaging agents," said Miller.

Atherosclerosis is a process of thickening and hardening of the artery walls as a result of fat deposits and inflammation. Risk factors for atherosclerosis include high levels of "bad" cholesterol, high blood pressure (or hypertension), smoking, diabetes and a family history of the disease – all of which can lead to heart attack or stroke.

Extreme hyperlipidemia, or the presence of excess fat and cholesterol molecules in the bloodstream, has been induced in mice and rabbits in the past, but microscopic examination of plaque build-up was only possible post-mortem.

Miller and colleagues fed a high-cholesterol diet (HCD) to zebrafish, supplementing the HCD with a red fluorescent lipid. They also used fish with endothelial cells – the thin layer of cells that line the interior surface of blood vessels – that were tagged with green fluorescent protein. Fish macrophages were tagged with red fluorescent protein, illuminating these immune cells which regulate chronic inflammation and indicate the development of atherosclerosis.

"Because zebrafish are transparent for the first 30 days of life, we can see in the living fish that the blood vessels glow green, while the fat deposits in vascular plaques are red," said Miller. He added that, interestingly, the zebrafish on a high-cholesterol diet did grow little fat fish stomachs.

The scientists used confocal microscopy, able to detect the fluorescent cells, in order to monitor vascular lipid accumulation and view the thickening of the endothelial lining in the living zebrafish. In other experiments, zebrafish in which the macrophages expressed red fluorescent protein were given HCD. This resulted in the pathologic accumulation of fluorescent macrophages along the endothelial cells of the vascular wall, as happens in human atherosclerotic plaques.

To explore the potential of zebrafish for atherosclerosis-related drug screening, the researchers administered the drug ezetimibe by adding it to the fish tank water. Ezetimibe is a medication marketed as Zetia, used to lower plasma cholesterol levels by lowering cholesterol absorption in the intestine. After treating the HCD-fed zebrafish with ezetimibe, the scientists were able to literally see that the drug significantly diminished the thickening of the vascular wall and improved its barrier function.

"Many researchers and clinicians agree that the treatment of atherosclerosis must begin at the earliest possible stage – the fatty streak," said Miller. "By feeding HCD to zebrafish, we were able to reproduce many of the processes involved in early atherogenesis. Our results suggest that this new model is suitable for studying inflammatory processes that occur in the early development of the disease, by looking at the function of vascular cells and lipid deposits in a live animal."

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>