Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transparent zebrafish a must-see model for atherosclerosis

06.03.2009
We usually think of fish as a "heart-healthy" food. Now fish are helping researchers better understand how heart disease develops in studies that could lead to new drugs to slow disease and prevent heart attacks.

Scientists at the University of California, San Diego School of Medicine have done to laboratory zebrafish exactly what many people still do to themselves – added excess cholesterol to their diet. Because young zebrafish are transparent, researchers were able to see – literally – the development of plaques in the zebrafish blood vessels.

The study led by Yury I. Miller, MD, PhD, associate professor of medicine at UC San Diego School of Medicine will be published online March 5th in advance of print in the April issue of Circulation Research, published by the American Heart Association.

"The use of this transparent zebrafish model is a promising method to screen for new drugs and cardiovascular imaging agents," said Miller.

Atherosclerosis is a process of thickening and hardening of the artery walls as a result of fat deposits and inflammation. Risk factors for atherosclerosis include high levels of "bad" cholesterol, high blood pressure (or hypertension), smoking, diabetes and a family history of the disease – all of which can lead to heart attack or stroke.

Extreme hyperlipidemia, or the presence of excess fat and cholesterol molecules in the bloodstream, has been induced in mice and rabbits in the past, but microscopic examination of plaque build-up was only possible post-mortem.

Miller and colleagues fed a high-cholesterol diet (HCD) to zebrafish, supplementing the HCD with a red fluorescent lipid. They also used fish with endothelial cells – the thin layer of cells that line the interior surface of blood vessels – that were tagged with green fluorescent protein. Fish macrophages were tagged with red fluorescent protein, illuminating these immune cells which regulate chronic inflammation and indicate the development of atherosclerosis.

"Because zebrafish are transparent for the first 30 days of life, we can see in the living fish that the blood vessels glow green, while the fat deposits in vascular plaques are red," said Miller. He added that, interestingly, the zebrafish on a high-cholesterol diet did grow little fat fish stomachs.

The scientists used confocal microscopy, able to detect the fluorescent cells, in order to monitor vascular lipid accumulation and view the thickening of the endothelial lining in the living zebrafish. In other experiments, zebrafish in which the macrophages expressed red fluorescent protein were given HCD. This resulted in the pathologic accumulation of fluorescent macrophages along the endothelial cells of the vascular wall, as happens in human atherosclerotic plaques.

To explore the potential of zebrafish for atherosclerosis-related drug screening, the researchers administered the drug ezetimibe by adding it to the fish tank water. Ezetimibe is a medication marketed as Zetia, used to lower plasma cholesterol levels by lowering cholesterol absorption in the intestine. After treating the HCD-fed zebrafish with ezetimibe, the scientists were able to literally see that the drug significantly diminished the thickening of the vascular wall and improved its barrier function.

"Many researchers and clinicians agree that the treatment of atherosclerosis must begin at the earliest possible stage – the fatty streak," said Miller. "By feeding HCD to zebrafish, we were able to reproduce many of the processes involved in early atherogenesis. Our results suggest that this new model is suitable for studying inflammatory processes that occur in the early development of the disease, by looking at the function of vascular cells and lipid deposits in a live animal."

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

The dispute about the origins of terahertz photoresponse in graphene results in a draw

25.04.2018 | Physics and Astronomy

Graphene origami as a mechanically tunable plasmonic structure for infrared detection

25.04.2018 | Materials Sciences

First form of therapy for childhood dementia CLN2 developed

25.04.2018 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>