Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Transparent soft PDMS eggshell created as step towards embryo lab on a chip


Lab-on-a-chip (LOC) systems have registered tremendous progress over the past 20 years. Myriad "chip" schemes have already emerged, ranging from the lung-on-a-chip and heart-on-a-chip to the liver-on-a-chip and kidney-on-a-chip.

However, an ideal embryo-on-a-chip has not yet been developed due to challenges in condensing so many life factors inside a conventional LOC.

This is a sideview for the 15 avian day embryo inside PDMS whole eggshell.

Credit: ©Science China Press

But now two scientists in the Department of Biomedical Engineering, part of the School of Medicine, at Tsinghua University in Beijing, have developed a PDMS (polydimethylsiloxane) "soft" process method to fabricate a transparent shell matching the shape and curvature of a real eggshell. Professor Liu Jing and graduate student Lai Yiyu present their advance toward creating an embryo lab on a chip in a just-released study, "Transparent soft PDMS eggshell," published in the Beijing-based journal SCIENCE CHINA Technological Sciences.

The most important feature of a conventional "Lab-on-a-chip" is its chemically based character, or its scaling down chemical tests into a miniature-size device.

In contrast, the newly proposed "egg-on-a-chip" is biologically based, aimed at scaling down a biological system into a miniature device. This platform contains more condensed evolutional tensors than its chemistry-based forerunners.

The biomimics system created by the two co-authors of the study significantly extended the length of the embryo culturing time. They explained in the new paper that PDMS is among the best biomaterials for many applications, and that multiple techniques could be integrated together in the new system.

PDMS likewise offers an excellent platform for in vivo fluorescent imaging studies via microscopes.

This reconstructed 3D image information offers an excellent in vivo fluorescent platform for biologists and clinical scientists.

In experiments carried out over the course of about two years, they constructed a series of transparent PDMS whole "eggshells" to successfully culture avian embryos for up to 17.5 days; and chimeric eggshells were engineered on normal eggs.

X-stage embryos were successfully initiated in these artificial egg structures and pre-chorioallantoic membranes were observed.

Their biomimetic shells, combining high optical transparency and subtle engineering, represent a new platform to study functional embryo development.

The experiments and advances led by these Beijing-based scientists can be replicated in other labs.

PDMS, they noted in the study, has emerged as one of the best biocompatible materials over the course of decades, and has already been used clinically, which underscore the safety and wide applications of the present method.

The authors also present forecasts on the future of their technology.

Practical applications are likely to include the injection of blood or any body fluidic specimens into this "egg-on-a-chip" for early diagnosis. This is because an egg has the potential to function as an amplification system.

While the amount of the final sample (blood, cell or tissue) could be significantly amplified, rare variations already pre-screened by a biological system could generate more reliable results.

This is a natural, biologically based diagnostic tool that could surpass most comparable technologies currently in use. At the same time, rare gene variations cultured in an egg could replace more tedious and expensive laboratory procedures. This points to the real "practical robustness" that an "egg-on-a-chip" could offer.


This work was partially supported by the National Natural Science Foundation of China (Grant No. 51376102).

See the article: Lai Y Y, Liu J. Transparent soft PDMS eggshell. SCIENCE CHINA Technological Sciences, 2015, doi: 10.1007/s11431-014-5737-4

SCIENCE CHINA Technological Sciences is part of Science China Press, a leading publisher of scientific journals in China that operates under the auspices of the Chinese Academy of Sciences. Science China Press presents to the world leading-edge advancements made by Chinese scientists across a spectrum of fields.

Liu Jing | EurekAlert!

Further reports about: Science biological system blood conventional embryos experiments lab on a chip

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>