Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transmission routes of spreading protein particles

27.03.2013
Study on cell cultures gives insights into the mechanisms of neurodegenerative diseases

In diseases like Alzheimer’s and Parkinson’s endogenous proteins accumulate in the brain, eventually leading to the death of nerve cells.


Nerve cells under the microscope: Spreading of protein particles between cells. Cells that produce protein particles (shown in turquoise) trigger formation of deposits of the same protein (shown in green) in neighboring cells. Source: J. Hofmann

These deposits, which consist of abnormally formed proteins, are supposed to migrate between interconnected areas of the brain, thereby contributing to the development of the illness. Now, a new laboratory study by scientists from Germany and the US shows that certain protein particles are indeed capable of multiplying and spreading from one cell to the next.

The investigation was conducted by researchers of the German Center for Neurodegenerative Diseases (DZNE) in Bonn and Munich who cooperated with scientists from the US and from other German institutions. The results are now published in the “Proceedings of the National Academy of Sciences of the USA“ (PNAS).

Are particles consisting of deformed proteins capable of moving from one cell’s interior to the next, multiplying and spreading as in a chain reaction? The team of scientists headed by Ina Vorberg, who is a researcher at the DZNE site in Bonn and a professor at the University of Bonn, investigated this hypothesis. The scientists did so with the help of cell cultures, which allowed them to adapt experiments to specific questions.

The researchers used cultured brain cells that originated from mice. The genetic code of a model protein was transferred into these cells, enabling the scientists to control production of the protein.

A yeast particle

The blueprint of the molecule was extracted from yeast DNA. This protein does not exist in humans. Nevertheless, the scientists chose this particular protein because it had several properties that were relevant for the study: In its natural environment – the yeast cell – it is capable of forming replicating “aggregates” (i. e. large protein particles). The protein deforms during this process. Now, the question was, whether something similar would happen in mammalian cells.

“At first, our mouse cells produced the protein, but no particles formed,” Vorberg reports. “The situation changed when we exposed the cells to aggregates of the same protein. Suddenly, the proteins which had been in solution started building clumps.”

Diffusing aggregates
Once this reaction had been triggered the cells went on producing aggregates. The researchers noticed that these clumps spread into neighboring cells, where they initiated synthesis of further aggregates.

“We have experimentally shown that certain protein particles originating from the cytosol, i. e. from inside the cells, are able to spread between cells. This means that in mammalian cells there are mechanisms capable of triggering such a chain reaction. Accordingly, what we have shown in our model system may be applicable to neurodegenerative diseases,” Vorberg comments.

Propagation of aggregates was most effective between adjacent cells. “At least in our model system, protein particles are not released efficiently into the medium and assimilated by neighboring cells. The most effective transmission happens by direct cell-to-cell contact. It is possible that cells form protrusions and that aggregates move from one cell to the next through this connection”, says the neuroscientist. What is happening here will be the focus of further research.

Basis for potential therapies

“It is important to know how protein particles disseminate”, Vorberg emphasizes. “Disease-related protein particles might propagate in a similar way to the model protein we investigated.”

Unraveling the mechanism for transmission between cells could lead to new methods for treatment. “If we find a way to prevent the spreading of disease-related protein particles, we might be able to interfere with the progression of the diseases,” Vorberg says.

Original publication
„Cell-to-cell propagation of infectious cytosolic protein aggregates”, Julia P. Hofmann, Philip Denner, Carmen Nussbaum-Krammer, Peer-Hendrik Kuhn, Michael H. Suhre, Thomas Scheibel, Stefan F. Lichtenthaler, Hermann M. Schätzl, Daniele Bano, Ina M. Vorberg, PNAS, online at: http://www.pnas.org/content/early/2013/03/15/1217321110.abstract :

The German Center for Neurodegenerative Diseases (DZNE) investigates the causes of diseases of the nervous system and develops strategies for prevention, treatment and care. It is an institution of the Helmholtz Association of German Research Centres with sites in Berlin, Bonn, Dresden, Göttingen, Magdeburg, Munich, Rostock/Greifswald, Tübingen and Witten. The DZNE cooperates closely with universities, their clinics and other research facilities. Website: www.dzne.de/en

Media Contact
Prof. Dr. Ina M. Vorberg
Group Leader
DZNE, Bonn
Tel.: 0049 228 43302-560
E-Mail: ina.vorberg@dzne.de

Dr. Dirk Förger
Head of Press and Public Relations of the DZNE
DZNE, Bonn
Tel.: 0049 228 43302-260
E-Mail: dirk.foerger@dzne.de

Sonja Jülich-Abbas | idw
Further information:
http://www.dzne.de

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>