Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Transmission routes of spreading protein particles

Study on cell cultures gives insights into the mechanisms of neurodegenerative diseases

In diseases like Alzheimer’s and Parkinson’s endogenous proteins accumulate in the brain, eventually leading to the death of nerve cells.

Nerve cells under the microscope: Spreading of protein particles between cells. Cells that produce protein particles (shown in turquoise) trigger formation of deposits of the same protein (shown in green) in neighboring cells. Source: J. Hofmann

These deposits, which consist of abnormally formed proteins, are supposed to migrate between interconnected areas of the brain, thereby contributing to the development of the illness. Now, a new laboratory study by scientists from Germany and the US shows that certain protein particles are indeed capable of multiplying and spreading from one cell to the next.

The investigation was conducted by researchers of the German Center for Neurodegenerative Diseases (DZNE) in Bonn and Munich who cooperated with scientists from the US and from other German institutions. The results are now published in the “Proceedings of the National Academy of Sciences of the USA“ (PNAS).

Are particles consisting of deformed proteins capable of moving from one cell’s interior to the next, multiplying and spreading as in a chain reaction? The team of scientists headed by Ina Vorberg, who is a researcher at the DZNE site in Bonn and a professor at the University of Bonn, investigated this hypothesis. The scientists did so with the help of cell cultures, which allowed them to adapt experiments to specific questions.

The researchers used cultured brain cells that originated from mice. The genetic code of a model protein was transferred into these cells, enabling the scientists to control production of the protein.

A yeast particle

The blueprint of the molecule was extracted from yeast DNA. This protein does not exist in humans. Nevertheless, the scientists chose this particular protein because it had several properties that were relevant for the study: In its natural environment – the yeast cell – it is capable of forming replicating “aggregates” (i. e. large protein particles). The protein deforms during this process. Now, the question was, whether something similar would happen in mammalian cells.

“At first, our mouse cells produced the protein, but no particles formed,” Vorberg reports. “The situation changed when we exposed the cells to aggregates of the same protein. Suddenly, the proteins which had been in solution started building clumps.”

Diffusing aggregates
Once this reaction had been triggered the cells went on producing aggregates. The researchers noticed that these clumps spread into neighboring cells, where they initiated synthesis of further aggregates.

“We have experimentally shown that certain protein particles originating from the cytosol, i. e. from inside the cells, are able to spread between cells. This means that in mammalian cells there are mechanisms capable of triggering such a chain reaction. Accordingly, what we have shown in our model system may be applicable to neurodegenerative diseases,” Vorberg comments.

Propagation of aggregates was most effective between adjacent cells. “At least in our model system, protein particles are not released efficiently into the medium and assimilated by neighboring cells. The most effective transmission happens by direct cell-to-cell contact. It is possible that cells form protrusions and that aggregates move from one cell to the next through this connection”, says the neuroscientist. What is happening here will be the focus of further research.

Basis for potential therapies

“It is important to know how protein particles disseminate”, Vorberg emphasizes. “Disease-related protein particles might propagate in a similar way to the model protein we investigated.”

Unraveling the mechanism for transmission between cells could lead to new methods for treatment. “If we find a way to prevent the spreading of disease-related protein particles, we might be able to interfere with the progression of the diseases,” Vorberg says.

Original publication
„Cell-to-cell propagation of infectious cytosolic protein aggregates”, Julia P. Hofmann, Philip Denner, Carmen Nussbaum-Krammer, Peer-Hendrik Kuhn, Michael H. Suhre, Thomas Scheibel, Stefan F. Lichtenthaler, Hermann M. Schätzl, Daniele Bano, Ina M. Vorberg, PNAS, online at: :

The German Center for Neurodegenerative Diseases (DZNE) investigates the causes of diseases of the nervous system and develops strategies for prevention, treatment and care. It is an institution of the Helmholtz Association of German Research Centres with sites in Berlin, Bonn, Dresden, Göttingen, Magdeburg, Munich, Rostock/Greifswald, Tübingen and Witten. The DZNE cooperates closely with universities, their clinics and other research facilities. Website:

Media Contact
Prof. Dr. Ina M. Vorberg
Group Leader
DZNE, Bonn
Tel.: 0049 228 43302-560

Dr. Dirk Förger
Head of Press and Public Relations of the DZNE
DZNE, Bonn
Tel.: 0049 228 43302-260

Sonja Jülich-Abbas | idw
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>