Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Translation error tracked in the brain of dementia patients

08.02.2013
In certain dementias silent areas of the genetic code are translated into highly unusual proteins by mistake. An international team of scientists including researchers from the German Center for Neurodegenerative Diseases (DZNE) in Munich and the Ludwig-Maximilians-Universität (LMU) present this finding in the online edition of “Science”.
The proteins that have now been identified shouldn’t actually exist. Nevertheless, they build the core of cellular aggregates whose identity has been enigmatic until now. These aggregates are typically associated with hereditary neurodegenerative diseases including variants of frontotemporal dementia (FTD), also known as frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS). They are likely to be damaging and might be a target for therapy.

FTD and ALS are part of a group of neurodegenerative diseases that show a broad and overlapping variety of symptoms: Patients often suffer from dementia, personality changes and may also be affected by language abnormalities and movement disorders. The problems often arise before the age of 65 without a clear cause. However, about 30 percent of cases are linked to a genetic cause. In Europe approximately 10 percent of patients show a common genetic feature:
In their DNA (the carrier of the genetic code) a particular short sequence appears in numerous copies one after another. Furthermore, proteins of unknown identity accumulate inside the brain of these patients. As it turns out both findings are directly related – that is what the team of researchers including molecular biologists Dieter Edbauer and Christian Haass has now been able to show.

“We have found that the proteins are linked to a genetic peculiarity which many patients have in common. At a certain location inside the gene C9orf72 there are several hundred repeats of the sequence GGGGCC, while healthy people display less than 20 such copies,” explains Prof. Edbauer, who researches at the DZNE and the LMU. “But it is surprising that these proteins are actually made, because these repeats fall into a region of the DNA that should not be translated into proteins.”

An area of DNA assumed to be silent

The DNA holds the blueprints for building proteins. In general, the beginning of such a blueprint is indicated by a certain molecular start signal, but the usual signal is missing in this case. The region of DNA comprising the numerous repeats should therefore not be translated into proteins. It seems that the process of protein synthesis is initiated in a non-textbook way. “Although quite rare there are two known alternatives to the common mechanism. Which procedure applies here, we don’t know yet,” says Prof. Haass, Site Speaker of the DZNE in Munich and chair of Metabolic Biochemistry at LMU.
Nevertheless, in cell culture experiments the researchers were able to show that long repeats of the sequence GGGGCC may in fact lead to the production of proteins, even though the usual start signal is missing. Furthermore, they identified the same proteins in the particles that typically accumulate in the brain of patients. The scientist could also identify their composition: They turned out to be dipeptid-repeat proteins, which comprise a very large number of identical building blocks.

“These are very extraordinary proteins that usually don’t show-up in the organism,” Edbauer notes. “As far as we know, they are completely useless and scarcely soluble. Therefore, they tend to aggregate and seem to damage the nerve cells. We haven’t formally proven toxicity, but there is ample evidence.” Because of their peculiarity these proteins might be an interesting target for new therapies. “As the mechanism of their production is so unusual, we may find ways to inhibit their synthesis without interfering with the formation of other proteins. One could also try to block their aggregation and accelerate their decomposition.”

The scientists have applied for a patent and are pursuing a major goal. “At the DZNE in Munich it is our dream to develop a therapy against these devastating diseases,“ Haass and Edbauer conclude.

Original Publication:
„The C9orf72 GGGGCC Repeat is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS”, Kohji Mori, Shih-Ming Weng, Thomas Arzberger, Stephanie May, Kristin Rentzsch, Elisabeth Kremmer, Bettina Schmid, Hans A. Kretzschmar, Marc Cruts, Christine Van Broeckhoven, Christian Haass, Dieter Edbauer, Science Express: https://www.sciencemag.org/content/early/2013/02/07/science.1232927.full

The German Center for Neurodegenerative Diseases (DZNE) investigates the causes of diseases of the nervous system and develops strategies for prevention, treatment and care. It is an institution of the Helmholtz Association of German Research Centres with sites in Berlin, Bonn, Dresden, Göttingen, Magdeburg, Munich, Rostock/Greifswald, Tübingen and Witten. The DZNE cooperates closely with universities, their clinics and other research facilities. Co-operation partners in Munich include the Ludwig-Maximilians-Universität (LMU).

Dr. Marcus Neitzert | idw
Further information:
http://www.dzne.de/en

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>