Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transistor in the Fly Antenna: Insect odorant receptors regulate their own sensitivity

18.03.2013
Highly developed antennae containing different types of olfactory receptors allow insects to use minute amounts of odors for orientation towards resources like food, oviposition sites or mates.
Scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, have now provided experimental proof that the extremely sensitive olfactory system of fruit flies is based on self-regulation of odorant receptors. Even a below threshold odor stimulation increases the sensitivity of the receptor, and if a second odor pulse arrives within a certain time span, a neural response will be elicited.

Highly developed antennae containing different types of olfactory receptors allow insects to use minute amounts of odors for orientation towards resources like food, oviposition sites or mates. Scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, have now used mutant flies and for the first time provided experimental proof that the extremely sensitive olfactory system of fruit flies − they are able to detect a few thousand odor molecules per milliliter of air, whereas humans need hundreds of millions − is based on self-regulation of odorant receptors.

The antennae of the fruit fly Drosophila melanogaster, shown schematically in dark yellow. Dark red: odor molecules. Right: The odorant receptors studied are protein dimers consisting of the odorant receptor Or22a and the co-receptor Orco; they mediate very sensitive responses to odor molecules. Above: State of sensitization − weak ion flow caused by cAMP; below: signals are “switched through” in the receptor system resulting in opening of the ion channel and electric signal transduction. The pictures are taken from the animation.

Graphics: Dieter Wicher, Max Planck Institute for Chemical Ecology. Animation: Moves Like Nature, Kimberly Falk

Even fewer molecules below the response threshold are sufficient to amplify the sensitivity of the receptors, and binding of molecules shortly afterwards triggers the opening of an ion channel that controls the fly’s reaction and flight behavior. This means that a below threshold odor stimulation increases the sensitivity of the receptor, and if a second odor pulse arrives within a certain time span, a neural response will be elicited. (PLOS ONE, March 12, 2013, DOI: 10.1371/journal.pone.0058889)

A sensitive sense of smell is vital

It is amazing how many fruit flies (Drosophila melanogaster) find their way to a rotting apple. It is known that insects are able to detect the slightest concentrations of odor molecules, especially pheromones, but also “food signals”.

Dieter Wicher, Bill Hansson and their colleagues at the Max Planck Institute for Chemical Ecology were looking for answers to the question why insects can trace odor molecules so easily and at such low concentrations in comparison to other animals. They focused their attention on odorant receptor proteins in the antenna, the insects’ nose. These insect proteins are pretty young from an evolutionary perspective and their molecular constituents may be the basis for the insects’ highly sensitive sense of smell.

Receptor system Or22a-Orco

Insect odorant receptors form a receptor system that consists of the actual receptor protein and an ion channel. After binding of an odor molecule, receptor protein and ion channel trigger the neural electrical response. This mechanism was recently described in the receptor system Or22a-Orco (Wicher et al., Nature 452, 2008); Sato et al., Nature 452, 2008). Apart from functioning as so-called ionotropic receptors, which enable ion flow through membranes after binding of odor molecules, odorant receptors also elicit intracellular signals. These stimulate the formation of cyclic adenosine monophosphate (cyclic AMP or cAMP), which activates an ion flow through the co-receptor Orco. The role and relevance of this weak and slow electrical current, however, was until now unclear.

Drosophila mutant Orco mut

Merid N. Getahun, a PhD student from Ethiopia, and his colleagues have conducted numerous experiments on Drosophila olfactory neurons. They injected tiny amounts of compounds that stimulate, inhibit or imitate cAMP formation directly into the sensory hairs housing olfactory sensory neurons on the fly antenna. The researchers tested the flies’ responses to ethyl butyrate, which has a fruity odor similar to pineapple, and measured activity in the sensory neurons by using glass microelectrodes. As a control, they used genetically modified fruit flies where the co-receptor Orco had been inactivated. “The fact that these mutants are no more able to respond to cAMP or the inhibition/activation of the involved key enzymes, such as protein kinase C and phospholipase C, shows that the highly sensitive olfactory system in insects is regulated intracellularly by their own odorant receptors,” says Dieter Wicher, the leader of the research group. The combination of odorant receptor and co-receptor Orco can be compared to a transistor, Wicher continues: A weak basic current is sufficient to release the main electric current that activates the neuron. The process can also be seen as a short-term memory situated in the insect nose. A very weak stimulus does not elicit a response when it first occurs, but if it reoccurs within a certain time span it will release the electrical response according to the principle “one time is no time, but two is a bunch.” [JWK/AO]

Original Publication:
Merid N. Getahun, Shannon B. Olsson, Sofia Lavista-Llanos, Bill S. Hansson, Dieter Wicher: Insect odorant response sensitivity is tuned by metabotropically autoregulated olfactory receptors. PLOS ONE, March 12, 2013; DOI: 10.1371/journal.pone.0058889
http://dx.doi.org/10.1371/journal.pone.0058889

Further Information:
Priv. Doz. Dr. Dieter Wicher, +49 3641 57-1415, dwicher@ice.mpg.de

Picture Requests:
Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de
or Download via http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/ext/1017.html?&L=0

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>