Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transforming cancer treatment

12.07.2012
Multidrug strategy emerges from new research
A Harvard researcher studying the evolution of drug resistance in cancer says that, in a few decades, “many, many cancers could be manageable.”

“Many people are dying needlessly of cancer, and this research may offer a new strategy in that battle,” said Martin Nowak, a professor of mathematics and of biology and director of the Program for Evolutionary Dynamics. “One hundred years ago, many people died of bacterial infections. Now, we have treatment for such infections — those people don’t have to die. I believe we are approaching a similar point with cancer.”

Nowak is one of several co-authors of a paper, published in Nature on June 28, that details how resistance to targeted drug therapy emerges in colorectal cancers and describes a multidrug approach to treatment that could make many cancers manageable, if not curable.

The key, Nowak’s research suggests, is to change the way clinicians battle the disease.

Physicians and researchers in recent years have increasingly turned to “targeted therapies” — drugs that combat cancer by interrupting its ability to grow and spread — rather than traditional chemotherapy, but such treatment is far from perfect. Most targeted therapies are effective for only a few months before the cancer evolves resistance to the drugs.

The culprit in the colon cancer treatment examined in the Nature paper is the KRAS gene, which is responsible for producing a protein to regulate cell division. When activated, the gene helps cancer cells develop resistance to targeted-therapy drugs, effectively making the treatment useless.

To better understand what role the KRAS gene plays in drug resistance, a team of researchers led by Bert Vogelstein, the Clayton Professor of Oncology and Pathology at the Johns Hopkins Kimmel Cancer Center, launched a study that began by testing patients to determine if the KRAS gene was activated in their tumors. Patients without an activated KRAS gene underwent a normal round of targeted therapy treatment, and the initial results — as expected — were successful. Tests performed after the treatment broke down, however, showed a surprising result: The KRAS gene had been activated.

As part of the research, Vogelstein’s team analyzed a handful of mutations that can lead to the activation of the KRAS gene. To help interpret those results, they turned to Nowak’s team, including mathematicians Benjamin Allen, a postdoctoral fellow in mathematical biology, and Ivana Bozic, a postdoctoral fellow in mathematics.

Analyzing the clinical results, Allen and Bozic were able to mathematically describe the exponential growth of the cancer and determine whether the mutation that led to drug resistance was pre-existing, or whether it occurred after treatment began. Their model was able to predict, with surprising accuracy, the window of time from when the drug is first administered to when resistance arises and the drug begins to fail.

“By looking at their results mathematically, we were able to determine conclusively that the resistance was already there, so the therapy was doomed from the start,” Allen said. “That had been an unresolved question before this study. Clinicians were finding that these kinds of therapies typically don’t work for longer than six months, and our finding provides an explanation for why that failure occurs.”

Put simply, Nowak said, the findings suggest that, of the billions of cancer cells that exist in a patient, only a tiny percentage — about one in a million — are resistant to drugs used in targeted therapy. When treatment starts, the nonresistant cells are wiped out. The few resistant cells, however, quickly repopulate the cancer, causing the treatment to fail.

“Whether you have resistance prior to the start of treatment was one of the large, outstanding questions associated with this type of treatment,” Bozic said. “Our study offers a quantitative understanding of how resistance evolves, and shows that, because resistance is there at the start, the single-drug therapy won’t work.”

The answer, Nowak said, is simple: Rather than the one drug used in targeted therapy, treatments must involve at least two drugs.

Nowak isn’t new to such strategies. In 1995 he participated in a study, also published in Nature, that focused on the rapid evolution of drug resistance in HIV. The result of that study, he said, was the development of the drug “cocktail” many HIV-positive patients use to help manage the disease.

Such a plan, however, isn’t without challenges.

The treatment must be tailored to the patient, and must be based on the genetic makeup of the patient’s cancer. Perhaps even more importantly, Nowak said, the two drugs used simultaneously must not overlap: If a single mutation allows the cancer to become resistant to both drugs, the treatment will fail just as the single-drug therapy does.

Nowak estimated that hundreds of drugs might be needed to address all the possible treatment variations. The challenge in the near term, he said, is to develop those drugs.

“This will be the main avenue for research into cancer treatment, I think, for the next decade and beyond,” Nowak said. “As more and more drugs are developed for targeted therapy, I think we will see a revolution in the treatment of cancer.”

Peter Reuell | EurekAlert!
Further information:
http://www.harvard.edu
http://news.harvard.edu/gazette/story/2012/07/transforming-cancer-treatment/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>