Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transformational Fruit Fly Genome Catalog Completed

09.02.2012
Scientists searching for the genomics version of the holy grail – more insight into predicting how an animal’s genes affect physical or behavioral traits – now have a reference manual that should speed gene discoveries in everything from pest control to personalized medicine.

In a paper published today in Nature, North Carolina State University genetics researchers team with scientists from across the globe to describe the new reference manual – the Drosophila melanogaster Reference Panel, or DGRP.

Dr. Trudy Mackay, William Neal Reynolds and Distinguished University Professor of Genetics and one of the paper’s lead authors, says that the reference panel contains 192 lines of fruit flies that differ enormously in their genetic variation but are identical within each line, along with their genetic sequence data.

These resources are publicly available to researchers studying so-called quantitative traits, or characteristics that vary and are influenced by multiple genes – think of traits like aggression or sensitivity to alcohol. Mackay expects the reference panel will benefit researchers studying everything from animal evolution to animal breeding to fly models of disease.

Environmental conditions also affect quantitative traits. But studying the variations of these different characteristics, or phenotypes, of inbred fruit flies under controlled conditions, Mackay says, can greatly aid efforts to unlock the secrets of quantitative traits.

“Each fly line in the reference panel is essentially genetically identical, but each line is also a different sample of genetic variation among the population,” Mackay says. “So the lines can be shared among the research community to allow researchers to measure traits of interest.”

The Nature paper showed that, in general, many genes were associated with three quantitative traits studied in fruit flies – resistance to starvation stress, chill coma recovery time and startle response – and that the effects of these genes were quite large.

“Until now, we had the information necessary to understand what makes a fruit fly different from, say, a mosquito,” Mackay says. “Now we understand the genetic differences responsible for individual variation, or why one strain of flies lives longer or is more aggressive than another strain.”

The study was funded by the National Institutes of Health, the National Human Genome Research Institute and the NVIDIA Foundation’s “Compute the Cure” program. Dr. Eric Stone, associate professor of genetics at NC State, is also a lead author of the paper, along with colleagues from Baylor College of Medicine and the Universitat Autonoma de Barcelona in Spain.

Note to editors: An abstract of the paper follows.

The Drosophila melanogaster Genetic Reference Panel
Authors: Trudy F.C. Mackay, Eric A. Stone, Michael M. Magwire, Mary Anna Carbone, Robert R.H. Anholt, Laura Duncan, Zeke Harris, Katherine W. Jordan, Faye Lawrence, Richard F. Lyman, Lavanya Turlapati, Akihiko Yamamoto, North Carolina State University; Stephen Richards, Baylor College of Medicine; Antonio Barbadilla, Campus Universitat Autonoma de Barcelona; et al

Published: Feb. 9, 2012, in Nature

Abstract: A major challenge of biology is understanding the relationship between molecular genetic variation and variation in quantitative traits, including fitness. This relationship determines our ability to predict phenotypes from genotypes and to understand how evolutionary forces shape variation within and between species. Previous efforts to dissect the genotype-phenotype map were based on incomplete genotypic information. Here, we describe the Drosophila melanogaster Genetic Reference Panel (DGRP), a community resource for analysis of population genomics and quantitative traits. The DGRP consists of fully sequenced inbred lines derived from a natural population. Population genomic analyses reveal reduced polymorphism in centromeric autosomal regions and the X chromosome, evidence for positive and negative selection, and rapid evolution of the X chromosome. Many variants in novel genes, most at low frequency, are associated with quantitative traits and explain a large fraction of the phenotypic variance. The DGRP facilitates genotype-phenotype mapping using the power of Drosophila genetics.

Media Contacts: Dr. Trudy Mackay, 919/515-5810 or trudy_mackay@ncsu.edu
Mick Kulikowski, News Services, 919/515-8387 or mick_kulikowski@ncsu.edu

Dr. Trudy Mackay | Newswise Science News
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>