Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transformational Fruit Fly Genome Catalog Completed

09.02.2012
Scientists searching for the genomics version of the holy grail – more insight into predicting how an animal’s genes affect physical or behavioral traits – now have a reference manual that should speed gene discoveries in everything from pest control to personalized medicine.

In a paper published today in Nature, North Carolina State University genetics researchers team with scientists from across the globe to describe the new reference manual – the Drosophila melanogaster Reference Panel, or DGRP.

Dr. Trudy Mackay, William Neal Reynolds and Distinguished University Professor of Genetics and one of the paper’s lead authors, says that the reference panel contains 192 lines of fruit flies that differ enormously in their genetic variation but are identical within each line, along with their genetic sequence data.

These resources are publicly available to researchers studying so-called quantitative traits, or characteristics that vary and are influenced by multiple genes – think of traits like aggression or sensitivity to alcohol. Mackay expects the reference panel will benefit researchers studying everything from animal evolution to animal breeding to fly models of disease.

Environmental conditions also affect quantitative traits. But studying the variations of these different characteristics, or phenotypes, of inbred fruit flies under controlled conditions, Mackay says, can greatly aid efforts to unlock the secrets of quantitative traits.

“Each fly line in the reference panel is essentially genetically identical, but each line is also a different sample of genetic variation among the population,” Mackay says. “So the lines can be shared among the research community to allow researchers to measure traits of interest.”

The Nature paper showed that, in general, many genes were associated with three quantitative traits studied in fruit flies – resistance to starvation stress, chill coma recovery time and startle response – and that the effects of these genes were quite large.

“Until now, we had the information necessary to understand what makes a fruit fly different from, say, a mosquito,” Mackay says. “Now we understand the genetic differences responsible for individual variation, or why one strain of flies lives longer or is more aggressive than another strain.”

The study was funded by the National Institutes of Health, the National Human Genome Research Institute and the NVIDIA Foundation’s “Compute the Cure” program. Dr. Eric Stone, associate professor of genetics at NC State, is also a lead author of the paper, along with colleagues from Baylor College of Medicine and the Universitat Autonoma de Barcelona in Spain.

Note to editors: An abstract of the paper follows.

The Drosophila melanogaster Genetic Reference Panel
Authors: Trudy F.C. Mackay, Eric A. Stone, Michael M. Magwire, Mary Anna Carbone, Robert R.H. Anholt, Laura Duncan, Zeke Harris, Katherine W. Jordan, Faye Lawrence, Richard F. Lyman, Lavanya Turlapati, Akihiko Yamamoto, North Carolina State University; Stephen Richards, Baylor College of Medicine; Antonio Barbadilla, Campus Universitat Autonoma de Barcelona; et al

Published: Feb. 9, 2012, in Nature

Abstract: A major challenge of biology is understanding the relationship between molecular genetic variation and variation in quantitative traits, including fitness. This relationship determines our ability to predict phenotypes from genotypes and to understand how evolutionary forces shape variation within and between species. Previous efforts to dissect the genotype-phenotype map were based on incomplete genotypic information. Here, we describe the Drosophila melanogaster Genetic Reference Panel (DGRP), a community resource for analysis of population genomics and quantitative traits. The DGRP consists of fully sequenced inbred lines derived from a natural population. Population genomic analyses reveal reduced polymorphism in centromeric autosomal regions and the X chromosome, evidence for positive and negative selection, and rapid evolution of the X chromosome. Many variants in novel genes, most at low frequency, are associated with quantitative traits and explain a large fraction of the phenotypic variance. The DGRP facilitates genotype-phenotype mapping using the power of Drosophila genetics.

Media Contacts: Dr. Trudy Mackay, 919/515-5810 or trudy_mackay@ncsu.edu
Mick Kulikowski, News Services, 919/515-8387 or mick_kulikowski@ncsu.edu

Dr. Trudy Mackay | Newswise Science News
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>