Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transformational Fruit Fly Genome Catalog Completed

09.02.2012
Scientists searching for the genomics version of the holy grail – more insight into predicting how an animal’s genes affect physical or behavioral traits – now have a reference manual that should speed gene discoveries in everything from pest control to personalized medicine.

In a paper published today in Nature, North Carolina State University genetics researchers team with scientists from across the globe to describe the new reference manual – the Drosophila melanogaster Reference Panel, or DGRP.

Dr. Trudy Mackay, William Neal Reynolds and Distinguished University Professor of Genetics and one of the paper’s lead authors, says that the reference panel contains 192 lines of fruit flies that differ enormously in their genetic variation but are identical within each line, along with their genetic sequence data.

These resources are publicly available to researchers studying so-called quantitative traits, or characteristics that vary and are influenced by multiple genes – think of traits like aggression or sensitivity to alcohol. Mackay expects the reference panel will benefit researchers studying everything from animal evolution to animal breeding to fly models of disease.

Environmental conditions also affect quantitative traits. But studying the variations of these different characteristics, or phenotypes, of inbred fruit flies under controlled conditions, Mackay says, can greatly aid efforts to unlock the secrets of quantitative traits.

“Each fly line in the reference panel is essentially genetically identical, but each line is also a different sample of genetic variation among the population,” Mackay says. “So the lines can be shared among the research community to allow researchers to measure traits of interest.”

The Nature paper showed that, in general, many genes were associated with three quantitative traits studied in fruit flies – resistance to starvation stress, chill coma recovery time and startle response – and that the effects of these genes were quite large.

“Until now, we had the information necessary to understand what makes a fruit fly different from, say, a mosquito,” Mackay says. “Now we understand the genetic differences responsible for individual variation, or why one strain of flies lives longer or is more aggressive than another strain.”

The study was funded by the National Institutes of Health, the National Human Genome Research Institute and the NVIDIA Foundation’s “Compute the Cure” program. Dr. Eric Stone, associate professor of genetics at NC State, is also a lead author of the paper, along with colleagues from Baylor College of Medicine and the Universitat Autonoma de Barcelona in Spain.

Note to editors: An abstract of the paper follows.

The Drosophila melanogaster Genetic Reference Panel
Authors: Trudy F.C. Mackay, Eric A. Stone, Michael M. Magwire, Mary Anna Carbone, Robert R.H. Anholt, Laura Duncan, Zeke Harris, Katherine W. Jordan, Faye Lawrence, Richard F. Lyman, Lavanya Turlapati, Akihiko Yamamoto, North Carolina State University; Stephen Richards, Baylor College of Medicine; Antonio Barbadilla, Campus Universitat Autonoma de Barcelona; et al

Published: Feb. 9, 2012, in Nature

Abstract: A major challenge of biology is understanding the relationship between molecular genetic variation and variation in quantitative traits, including fitness. This relationship determines our ability to predict phenotypes from genotypes and to understand how evolutionary forces shape variation within and between species. Previous efforts to dissect the genotype-phenotype map were based on incomplete genotypic information. Here, we describe the Drosophila melanogaster Genetic Reference Panel (DGRP), a community resource for analysis of population genomics and quantitative traits. The DGRP consists of fully sequenced inbred lines derived from a natural population. Population genomic analyses reveal reduced polymorphism in centromeric autosomal regions and the X chromosome, evidence for positive and negative selection, and rapid evolution of the X chromosome. Many variants in novel genes, most at low frequency, are associated with quantitative traits and explain a large fraction of the phenotypic variance. The DGRP facilitates genotype-phenotype mapping using the power of Drosophila genetics.

Media Contacts: Dr. Trudy Mackay, 919/515-5810 or trudy_mackay@ncsu.edu
Mick Kulikowski, News Services, 919/515-8387 or mick_kulikowski@ncsu.edu

Dr. Trudy Mackay | Newswise Science News
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>