Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New transcription factor reveals molecular mechanism for wound-induced organ regeneration

11.03.2011
Researchers at the RIKEN Plant Science Center (PSC) and the National Institute of Advanced Industrial Science and Technology (AIST) have identified a novel transcription factor controlling how plants dedifferentiate cells in response to wounding.

The finding sheds first-ever light on the molecular-level mechanisms of plant cell dedifferentiation, offering fundamental insights on wound-induced organ regeneration and promising applications in agriculture and manufacturing.

One of the most remarkable properties of plants is their capacity to regenerate tissue structures and even whole organs to replace those damaged or lost through injury. Plants are able to do this thanks to high-level dedifferentiation, a process whereby mature cells withdraw from their specialized state and acquire proliferation ability and pluripotency, enabling them to develop anew into different cell types. While the knowledge and use of techniques for plant organ regeneration has a long history in horticulture, little is known about the molecular mechanisms underlying dedifferentiation.

To clarify these mechanisms, the researchers studied a common type of cell dedifferentiation induced by wounding, where its role in tissue and organ regeneration is critical to survival. In plants, this regeneration frequently occurs through the creation of masses of cells known as callus, which grow over the wound to protect it. Using data from earlier research, the researchers identified a gene in the model plant Arabidopsis thaliana that is upregulated in callus. Further investigation revealed that the gene is rapidly expressed at the wound site and throughout the development of the callus, pointing to a potential role in wound-induced dedifferentiation.

Through a series of experiments, the researchers went on to analyze the function of this gene and the transcription factor it encodes, referred to as WOUND INDUCED DEDIFFERENTIATION 1 (WIND1). Elevated expression of the WIND1 gene in wounds, and formation of callus in response to WIND1 activation, reveal its role as a master regulator for wound-induced dedifferentiation in plants.

Together, the findings establish a mechanism for transcriptional control of cell dedifferentiation underlying wound-induced organ regeneration. While laying the groundwork for fundamental advances in plant science, the research also opens the door to applications in agricultural technology as well as in the production of useful materials.

For more information, please contact:

Dr. Keiko Sugimoto
Dr. Akira Iwase
Cell Function Research Unit
RIKEN Plant Science Center
Tel: +81-(0)45-503-9570 / Fax: +81-(0)48-503-9591
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Email: koho@riken.jp
Reference:
Iwase et al., The AP2/ERF Transcription Factor WIND1 Controls Cell Dedifferentiation in Arabidopsis, Current Biology (2011), doi:10.1016/j.cub.2011.02.020

About the RIKEN Plant Science Center

With rapid industrialization and a world population set to top 9 billion within the next 30 years, the need to increase our food production capacity is more urgent today than it ever has been before. Avoiding a global crisis demands rapid advances in plant science research to boost crop yields and ensure a reliable supply of food, energy and plant-based materials.

The RIKEN Plant Science Center (PSC), located at the RIKEN Yokohama Research Institute in Yokohama City, Japan, is at the forefront of research efforts to uncover mechanisms underlying plant metabolism, morphology and development, and apply these findings to improving plant production. With laboratories ranging in subject area from metabolomics, to functional genomics, to plant regulation and productivity, to plant evolution and adaptation, the PSC's broad scope grants it a unique position in the network of modern plant science research. In cooperation with universities, research institutes and industry, the PSC is working to ensure a stable supply of food, materials, and energy to support a growing world population and its pressing health and environmental needs.

Journal information
Iwase et al., The AP2/ERF Transcription Factor WIND1 Controls Cell Dedifferentiation in Arabidopsis, Current Biology (2011), doi:10.1016/j.cub.2011.02.020

gro-pr | Research asia research news
Further information:
http://www.psc.riken.jp/english/

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>