Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


On the Trail of Stradivari

Secret behind the composition of the varnish on Stradivari violins revealed

Antonio Stradivari is the most famous instrument maker of all time. He was especially famous for his violins, which he produced in Cremona from about 1665 until his death in 1737. In particular, the legendary varnish on his instruments has fascinated musicians, violinmakers, historians, and chemists since the beginning of the 19th century—inciting controversial speculation about “secret” ingredients.

The use of analytical processes has allowed a team of scientists from various French and German institutions to shine a light on the mystery. As the researchers led by Jean-Philippe Echard (Cité de la musique—Musée de la musique, Paris) and Loïc Bertrand (IPANEMA—Synchrotron SOLEIL, Gif-sur-Yvette) report in the journal Angewandte Chemie, Stradivari used completely common and easily obtained materials that were broadly used in 18th century decorative arts and paintings.

The team examined five Stradivari violins that have been in the collection of the Musée de la musique for at least a century: a “Long Pattern” model, possibly from the year 1692, the “Davidoff”, dated from the year 1708, the “Provigny” from 1716 (the picture shows a cross-section of its varnish with the wood at the bottom), the “Sarasate” from 1724, and the head of a viola d’amore, dated from around 1720. The researchers took samples containing both wood and varnish from carefully selected locations and subjected them to complementary spectroscopic and microscopic examinations.

“Although the five instruments were produced over a period of three decades, their varnishes are very similar,” explains Echard. “Stradivari first applied a layer of an oil comparable to the oils used by painters of the same epoch, without fillers or pigments to seal the wood. We did not find a mineral-rich layer, as some earlier work suggests. The master violinmaker next applied a slightly tinted oil–resin layer. We have detected nothing that would have suggested the use of protein-containing materials, gums, or fossil resins.”

The researchers found no pigments in the outer layer of the “Long Pattern” model. In earlier examinations, they found the red pigment vermilion on the “Sarasate”. Now they have detected two other red pigments in Stradivari’s varnish: red iron oxides and a lake pigment made of an anthraquinone dye, probably chochineal, on an alumina substrate. Bertrand indicates that a very broad array of techniques was an absolute necessity to cope with the analytical challenge of studying such complex micro samples.

Stradivari therefore used materials that were easily obtained and broadly used in his time. The use of multiple red pigments allowed him to give a variety of tints to his instruments, which are still highly praised for their beautiful appearance. Says Echard, “ Stradivari thus did not use any unusual or secret ingredients, he was simply a true master of his craft.”

Contact: Philippe Provensal (press officer, Musée de la musique),, Ph. +33 1 44 84 45 63

Author: Jean-Philippe Echard, Cité de la musique, Paris (France),

Title: The Nature of the Extraordinary Finish of Stradivari's Instruments

Philippe Provensal | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>