Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the Trail of Stradivari

04.12.2009
Secret behind the composition of the varnish on Stradivari violins revealed

Antonio Stradivari is the most famous instrument maker of all time. He was especially famous for his violins, which he produced in Cremona from about 1665 until his death in 1737. In particular, the legendary varnish on his instruments has fascinated musicians, violinmakers, historians, and chemists since the beginning of the 19th century—inciting controversial speculation about “secret” ingredients.

The use of analytical processes has allowed a team of scientists from various French and German institutions to shine a light on the mystery. As the researchers led by Jean-Philippe Echard (Cité de la musique—Musée de la musique, Paris) and Loïc Bertrand (IPANEMA—Synchrotron SOLEIL, Gif-sur-Yvette) report in the journal Angewandte Chemie, Stradivari used completely common and easily obtained materials that were broadly used in 18th century decorative arts and paintings.

The team examined five Stradivari violins that have been in the collection of the Musée de la musique for at least a century: a “Long Pattern” model, possibly from the year 1692, the “Davidoff”, dated from the year 1708, the “Provigny” from 1716 (the picture shows a cross-section of its varnish with the wood at the bottom), the “Sarasate” from 1724, and the head of a viola d’amore, dated from around 1720. The researchers took samples containing both wood and varnish from carefully selected locations and subjected them to complementary spectroscopic and microscopic examinations.

“Although the five instruments were produced over a period of three decades, their varnishes are very similar,” explains Echard. “Stradivari first applied a layer of an oil comparable to the oils used by painters of the same epoch, without fillers or pigments to seal the wood. We did not find a mineral-rich layer, as some earlier work suggests. The master violinmaker next applied a slightly tinted oil–resin layer. We have detected nothing that would have suggested the use of protein-containing materials, gums, or fossil resins.”

The researchers found no pigments in the outer layer of the “Long Pattern” model. In earlier examinations, they found the red pigment vermilion on the “Sarasate”. Now they have detected two other red pigments in Stradivari’s varnish: red iron oxides and a lake pigment made of an anthraquinone dye, probably chochineal, on an alumina substrate. Bertrand indicates that a very broad array of techniques was an absolute necessity to cope with the analytical challenge of studying such complex micro samples.

Stradivari therefore used materials that were easily obtained and broadly used in his time. The use of multiple red pigments allowed him to give a variety of tints to his instruments, which are still highly praised for their beautiful appearance. Says Echard, “ Stradivari thus did not use any unusual or secret ingredients, he was simply a true master of his craft.”

Contact: Philippe Provensal (press officer, Musée de la musique), pprovensal@cite-musique.fr, Ph. +33 1 44 84 45 63

Author: Jean-Philippe Echard, Cité de la musique, Paris (France), mailto:jpechard@cite-musique.fr

Title: The Nature of the Extraordinary Finish of Stradivari's Instruments

Philippe Provensal | Angewandte Chemie
Further information:
http://www.cite-musique.fr
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>