Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the trail of the epigenetic code

12.10.2010
Test system on Drosophila should provide the key to histone function. The genetic inherited material DNA was long viewed as the sole bearer of hereditary information.

The function of its packaging proteins, the histones, was believed to be exclusively structural. Additional genetic information can be stored, however, and passed on to subsequent generations through chemical changes in the DNA or histones.

Scientists from the Max Planck Institute for Biophysical Chemistry in Göttingen have succeeded in creating an experimental system for testing the function of such chemical histone modifications and their influence on the organism. Chemical modifications to the histones may constitute an "epigenetic histone code" that complements the genetic code and decides whether the information from certain regions of the DNA is used or suppressed. (EMBO reports, November 1, 2010, advance online publication)

How do you get a two-metre-long DNA thread into the cell nucleus? By winding it into a ball, of course! The DNA is wound around proteins known as histones, becoming 50,000 times shorter as a result. Other proteins then aggregate on it to form chromatin and, finally, the chromosomes. The latter are the product of an ingenious packaging trick. The five types of histones (H1, H2A, H2B, H3 und H4) fulfil even more tasks, however, and this is what makes them so fascinating. Histones can have small chemical attachments, such as acetyl, methyl and phosphate groups, in different places. These cause the opening of the chromatin, for example, and hence enable the genetic information to be read. Conversely, certain areas of the DNA molecule can be deactivated and rendered unreadable through other modifications, such as the binding of proteins. Scientists refer to this process as "gene silencing". "The histone modifications can intervene in the control of gene activity in this way and, as a result, complement the genetic code," explains Herbert Jäckle, Director of the Max Planck Institute for Biophysical Chemistry in Göttingen.

Every time a cell divides, this modification pattern of the histones is inherited by the daughter cells. The scientists assume that this epigenetic inheritance is controlled by a cell-specific or organ-specific "histone code". "This decides whether the cell machinery has access to the DNA-coded genes or whether the access is blocked," says Jäckle. The scientists would very much like to crack this code: for the production of the histones, hundreds of gene copies are stored in the genome of higher organisms. Therefore, up until now, it appeared to be impossible to switch off these gene copies and replace them with genetically-modified histone variants. Researchers could only create a test system if they managed to do this: if these variants lack certain docking sites, for example for chemical groups, certain modifications to the histones could be prevented and it would then be possible to investigate the extent to which the absence of these modifications leads to diagnosable defects in the organism.

The Max Planck researchers in Göttingen have now succeeded in developing a new method for researching the function of all histone modifications. The cell biologists removed all of the histone genes from the genome of the fruit fly Drosophila melanogaster. As a result, the cells could no longer divide. As occurs with normal cell division, the organism’s genome is still doubled through DNA synthesis but the cell then remains at a standstill in the division cycle and the organism dies. The situation normalises progressively, however, with the increasing number of copies of the four histone genes produced: "Flies with twelve copies of the histone gene cluster ultimately survive and are capable of reproducing," explains Jäckle’s colleague and project leader Alf Herzig.

It had already been established for multicellular organisms that several copies of the histone gene are required for the organism to survive. However, the results obtained by the researchers also indicate that the cell realises during division that histones are lacking, and the division of the cell is then halted despite the fact that DNA has already been doubled - as is the case during all cell division processes. "Communication paths clearly exist between the histone production process and the cell division machinery," says Ufuk Günesdogan, a doctoral student in the department. Most importantly, the researchers now have a test system at their disposal into which histone variants can be channelled for the gradual experimental examination of the function of histone modification and, ultimately, the histone code in the organism. It can only be a matter of time now until the code is finally cracked.

Michael Frewin | alfa
Further information:
http://goto.mpg.de/mpg/news/20101011/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>