Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traffic Cops of the Immune System

30.11.2012
Molecule called IκBNS in charge of regulatory immune cell maturation

A certain type of immune cell – the regulatory T cell, or Treg for short – is in charge of putting on the brakes on the immune response. In a way, this cell type might be considered the immune system’s traffic cop.


The figure shows the localization of IkBNS in the cell. IkBNS molecules (green) occur in dotted structures within the cell nucleus (blue). The function of these structures is, however, largely unknown.

HZI / Schmitz

Now, scientists at the Helmholtz Centre for Infection Research (HZI) have looked into the origin of Tregs and uncovered a central role played by the protein IκBNS. Armed with this knowledge, the researchers hope to manipulate Tregs in order to either inhibit or activate the immune system. Biochemist Prof. Ingo Schmitz and his team have now published their findings in the scientific journal Immunity.

The immune system is a complex network of different types of cells and chemical messengers. The regulatory cells and other immune cells exist together in a delicate balance. Any disturbance of this balance could have serious consequences: If there are too many Tregs, the immune system might be "thwarted" and little would stand in the way of infections or tumors spreading throughout the body. By contrast, if there are too few Tregs, other immune cells could get out of control and attack the body's own tissues: autoimmune diseases like rheumatoid arthritis or the chronic inflammatory bowel disease ulcerative colitis may be a consequence. Tregs also play an important role following an organ transplant as they decide whether the body will accept or reject the donor organ.

But what it is exactly that makes immature immune cells choose the "police officer career" had eluded scientists. Schmitz and his team from the HZI, the Otto von Guericke University Magdeburg, the Charité Universitätsmedizin Berlin, the Harvard Medical School Boston, the TWINCORE in Hanover, the Eberhard Karls University Tübingen and the Heinrich Heine University Düsseldorf were now able to demonstrate that the transcription factor IκBNS contributes considerably to Treg development. The molecule promotes formation of the protein Foxp3, the Tregs' central feature. IκBNS influences the large NFκB family of transcription factors. These signaling molecules trigger a number of different inflammatory responses elicited by the immune system. "It was therefore all the more surprising for us when we identified IκBNS’ central role in Treg maturation.

Essentially, these are cells capable of constraining inflammation – even though IκBNS in no way influences the function of regulatory T cells," explains Dr. Marc Schuster, one of Schmitz' colleagues at HZI and the article’s first author. The researchers tested their hypothesis regarding IκBNS’ central role in Treg development in mice that are missing this factor. Since cells that lack IκBNS do not "become cops," the immune system's effector cells are undamped and could trigger chronic inflammation of the intestine.

The results have confirmed that further research on IκBNS is of interest from a medical perspective as well. On the one hand, it allows predicting diseases: If IκBNS is fraught with errors, this could trigger autoimmune disorders. On the other hand, one potential therapeutic goal might be "to manipulate IκBNS in such a way that we can control the number of Tregs," explains Schmitz, who, in addition to his HZI research, also has a chair at the Otto von Guericke University Magdeburg. "IκBNS stabilization could benefit autoimmune disease therapy. As far as infections or tumors are concerned, we would need to inhibit IκBNS to decrease the number of regulatory T cells. Of course, all that is still in the very distant future." But because IκBNS also plays an important role in effector cell activation, an intervention might have unforeseen consequences. "This is a challenge you face with many different therapeutic targets," adds Schmitz.

Original publication:
Marc Schuster, Rainer Glauben, Carlos Plaza-Sirvent, Lisa Schreiber, Michaela Annemann, Stefan Floess, Anja A. Kühl, Linda K. Clayton, Tim Sparwasser, Klaus Schulze-Osthoff, Klaus Pfeffer, Jochen Huehn, Britta Siegmund, Ingo Schmitz
The atypical NFκB inhibitor IκBNS mediates regulatory T cell development by regulating Foxp3 induction
Immunity, 2012

The research group "Systems-oriented Immunology and Inflammation Research" explores the molecular processes that make immune cells tolerant to the body’s own tissues. This includes especially the cellular suicide program apoptosis.

The Helmholtz Centre for Infection Research
At the Helmholtz Centre for Infection Research in Braunschweig, scientists are studying microbial virulence factors, host-pathogen interactions and immunity. The goal is to develop strategies for the diagnosis, prevention and therapy of human infectious diseases.

The Otto von Guericke University Magdeburg:
One of the Otto von Guericke University Magdeburg Medical Faculty’s research emphases is "Immunology including molecular medicine relating to inflammation". The goal is to develop new therapeutic approaches and deliver them to the patient.

Dr. Jan Grabowski | Helmholtz-Zentrum
Further information:
http://www.uni-magdeburg.de
http://www.helmholtz-hzi.de/en
http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/traffic_cops_of_the_immune_system/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>