Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traffic Cops of the Immune System

30.11.2012
Molecule called IκBNS in charge of regulatory immune cell maturation

A certain type of immune cell – the regulatory T cell, or Treg for short – is in charge of putting on the brakes on the immune response. In a way, this cell type might be considered the immune system’s traffic cop.


The figure shows the localization of IkBNS in the cell. IkBNS molecules (green) occur in dotted structures within the cell nucleus (blue). The function of these structures is, however, largely unknown.

HZI / Schmitz

Now, scientists at the Helmholtz Centre for Infection Research (HZI) have looked into the origin of Tregs and uncovered a central role played by the protein IκBNS. Armed with this knowledge, the researchers hope to manipulate Tregs in order to either inhibit or activate the immune system. Biochemist Prof. Ingo Schmitz and his team have now published their findings in the scientific journal Immunity.

The immune system is a complex network of different types of cells and chemical messengers. The regulatory cells and other immune cells exist together in a delicate balance. Any disturbance of this balance could have serious consequences: If there are too many Tregs, the immune system might be "thwarted" and little would stand in the way of infections or tumors spreading throughout the body. By contrast, if there are too few Tregs, other immune cells could get out of control and attack the body's own tissues: autoimmune diseases like rheumatoid arthritis or the chronic inflammatory bowel disease ulcerative colitis may be a consequence. Tregs also play an important role following an organ transplant as they decide whether the body will accept or reject the donor organ.

But what it is exactly that makes immature immune cells choose the "police officer career" had eluded scientists. Schmitz and his team from the HZI, the Otto von Guericke University Magdeburg, the Charité Universitätsmedizin Berlin, the Harvard Medical School Boston, the TWINCORE in Hanover, the Eberhard Karls University Tübingen and the Heinrich Heine University Düsseldorf were now able to demonstrate that the transcription factor IκBNS contributes considerably to Treg development. The molecule promotes formation of the protein Foxp3, the Tregs' central feature. IκBNS influences the large NFκB family of transcription factors. These signaling molecules trigger a number of different inflammatory responses elicited by the immune system. "It was therefore all the more surprising for us when we identified IκBNS’ central role in Treg maturation.

Essentially, these are cells capable of constraining inflammation – even though IκBNS in no way influences the function of regulatory T cells," explains Dr. Marc Schuster, one of Schmitz' colleagues at HZI and the article’s first author. The researchers tested their hypothesis regarding IκBNS’ central role in Treg development in mice that are missing this factor. Since cells that lack IκBNS do not "become cops," the immune system's effector cells are undamped and could trigger chronic inflammation of the intestine.

The results have confirmed that further research on IκBNS is of interest from a medical perspective as well. On the one hand, it allows predicting diseases: If IκBNS is fraught with errors, this could trigger autoimmune disorders. On the other hand, one potential therapeutic goal might be "to manipulate IκBNS in such a way that we can control the number of Tregs," explains Schmitz, who, in addition to his HZI research, also has a chair at the Otto von Guericke University Magdeburg. "IκBNS stabilization could benefit autoimmune disease therapy. As far as infections or tumors are concerned, we would need to inhibit IκBNS to decrease the number of regulatory T cells. Of course, all that is still in the very distant future." But because IκBNS also plays an important role in effector cell activation, an intervention might have unforeseen consequences. "This is a challenge you face with many different therapeutic targets," adds Schmitz.

Original publication:
Marc Schuster, Rainer Glauben, Carlos Plaza-Sirvent, Lisa Schreiber, Michaela Annemann, Stefan Floess, Anja A. Kühl, Linda K. Clayton, Tim Sparwasser, Klaus Schulze-Osthoff, Klaus Pfeffer, Jochen Huehn, Britta Siegmund, Ingo Schmitz
The atypical NFκB inhibitor IκBNS mediates regulatory T cell development by regulating Foxp3 induction
Immunity, 2012

The research group "Systems-oriented Immunology and Inflammation Research" explores the molecular processes that make immune cells tolerant to the body’s own tissues. This includes especially the cellular suicide program apoptosis.

The Helmholtz Centre for Infection Research
At the Helmholtz Centre for Infection Research in Braunschweig, scientists are studying microbial virulence factors, host-pathogen interactions and immunity. The goal is to develop strategies for the diagnosis, prevention and therapy of human infectious diseases.

The Otto von Guericke University Magdeburg:
One of the Otto von Guericke University Magdeburg Medical Faculty’s research emphases is "Immunology including molecular medicine relating to inflammation". The goal is to develop new therapeutic approaches and deliver them to the patient.

Dr. Jan Grabowski | Helmholtz-Zentrum
Further information:
http://www.uni-magdeburg.de
http://www.helmholtz-hzi.de/en
http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/traffic_cops_of_the_immune_system/

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>