Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trading carats for nanometers - and defective diamonds for crystal clear microscopy

26.02.2009
Large, perfect diamonds are precious to almost all of us but to some scientists, it is the defects that really matter. This is because defects can form nanoscopic color centers, which play a key role in the development of both quantum computing and quantum cryptography.

A research team at the Max Planck Institute for Biophysical Chemistry in Göttingen has now probed these color centers inside the crystal with unprecedented resolution using an optical microscope. Using STED microscopy, the scientists identified even densely packed color centers and determined their position inside the crystal with a precision better than 0.15 nanometers, corresponding to the dimension of an atom.


Sharp focus: Recordings of lattice defects in diamond crystals are 28 times sharper with the super resolving STED microscope than with conventional fluorescence microscopy methods, namely 8 nanometers. Picture: Rittweger & Hell, MPIbpc

Diamonds are brilliant not only as gem stones but scientists are also increasingly interested in these precious crystals. As the perfect jewel, the colorless variant glitters brilliantly - but in science it is the much cheaper fluorescent diamonds that cause the sensation. Their color comes from impurities, such as nitrogen atoms, in the diamond lattice.

If a nitrogen atom sits next to a vacancy in the crystal lattice, a luminescent defect of atomic size is formed. Electrons of these color centers can - similar to dye molecules - be excited by laser light. When they return to the ground state, the excitation energy is converted to fluorescence light. This fluorescence glowing and their ability to form atomically small magnets render color centers in diamond extremely interesting.

Researchers hope to use diamond color centers as small processors in quantum computing to speed up specific arithmetic operations, and their suitability for encoding highly sensitive data is currently being explored. However, there is a crucial drawback for observing these color centers inside the crystal: single defects can only be recognized with a fluorescence microscope, but only if they are further apart than approximately 200 nanometers (millionth of a millimeter) because this is the resolution limit of a standard optical microscope.

Stefan Hell's group at the Max Planck Institute for Biophysical Chemistry in Göttingen succeeded in recording the first images of densely packed individual color centers employing STED (Stimulated emission depletion) microscopy. They pushed the current resolution limit of STED down to a few nanometers. Diamond color centers closer than a tiny fraction of the resolution limit could be separated and their position determined with a precision of 0.15 nanometers. Scientists have now a method at hand to individually address densely packed color centers - with conventional lenses and focused light. For the ongoing research and application of these color centers this is a major breakthrough. This work is also important for the field of crystallography, which now has another method at hand to study crystal structures locally.

That nitrogen-vacancies fluoresce after excitation with laser pulses also makes them attractive for a different research field: biological fluorescence nanoscopy. Scientists plan to reveal a live cell's secrets using fluorescent diamonds, requiring tiny diamond nano particles which can be used for labeling cells."Organic fluorescent dyes, which we routinely use for STED, have the disadvantage that they blink and eventually bleach", says Eva Rittweger, a PhD student in the department. "However, color centers in diamonds are extremely photostable even when observed for hours in the STED microscope."

Research groups in Würzburg, Stuttgart, as well as in Asia and America are working on applying the nanocrystals to biological and medical fundamental research. "If we are successful in exploiting this property in nanodiamonds, one would have a new class of fluorescent markers and a form of fluorescence nanoscopy without bleaching. This could, in combination with the nanometric resolution of STED microscopy, improve imaging of the cell at the nanoscale", says Stefan Hell.

Original publication:
Eva Rittweger, Kyu Young Han, Scott E. Irvine, Christian Eggeling, and Stefan W. Hell. STED microscopy reveals crystal colour centres wit nanometric resolution. Nature Photonics, Online Publication, February 25, 2009 | doi:10.1038/nphoton.2009.2
Contact:
Prof. Dr. Stefan W. Hell, Department of NanoBiophotonics
Max Planck Institute for Biophysical Chemistry, Göttingen
Phone: +49 551 201 -2500, -2503
E-Mail: shell@gwdg.de
Dr. Carmen Rotte, Press and public relations office
Max Planck Institute for Biophysical Chemistry, Göttingen
Phone: +49 551 201 -1304
E-Mail: crotte@gwdg.de

Dr. Carmen Rotte | Max-Planck-Institut
Further information:
http://www.mpibpc.mpg.de/groups/pr/PR/2009/09_06_en/
http://www.mpibpc.mpg.de/groups/hell/

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>