Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Trading carats for nanometers - and defective diamonds for crystal clear microscopy

Large, perfect diamonds are precious to almost all of us but to some scientists, it is the defects that really matter. This is because defects can form nanoscopic color centers, which play a key role in the development of both quantum computing and quantum cryptography.

A research team at the Max Planck Institute for Biophysical Chemistry in Göttingen has now probed these color centers inside the crystal with unprecedented resolution using an optical microscope. Using STED microscopy, the scientists identified even densely packed color centers and determined their position inside the crystal with a precision better than 0.15 nanometers, corresponding to the dimension of an atom.

Sharp focus: Recordings of lattice defects in diamond crystals are 28 times sharper with the super resolving STED microscope than with conventional fluorescence microscopy methods, namely 8 nanometers. Picture: Rittweger & Hell, MPIbpc

Diamonds are brilliant not only as gem stones but scientists are also increasingly interested in these precious crystals. As the perfect jewel, the colorless variant glitters brilliantly - but in science it is the much cheaper fluorescent diamonds that cause the sensation. Their color comes from impurities, such as nitrogen atoms, in the diamond lattice.

If a nitrogen atom sits next to a vacancy in the crystal lattice, a luminescent defect of atomic size is formed. Electrons of these color centers can - similar to dye molecules - be excited by laser light. When they return to the ground state, the excitation energy is converted to fluorescence light. This fluorescence glowing and their ability to form atomically small magnets render color centers in diamond extremely interesting.

Researchers hope to use diamond color centers as small processors in quantum computing to speed up specific arithmetic operations, and their suitability for encoding highly sensitive data is currently being explored. However, there is a crucial drawback for observing these color centers inside the crystal: single defects can only be recognized with a fluorescence microscope, but only if they are further apart than approximately 200 nanometers (millionth of a millimeter) because this is the resolution limit of a standard optical microscope.

Stefan Hell's group at the Max Planck Institute for Biophysical Chemistry in Göttingen succeeded in recording the first images of densely packed individual color centers employing STED (Stimulated emission depletion) microscopy. They pushed the current resolution limit of STED down to a few nanometers. Diamond color centers closer than a tiny fraction of the resolution limit could be separated and their position determined with a precision of 0.15 nanometers. Scientists have now a method at hand to individually address densely packed color centers - with conventional lenses and focused light. For the ongoing research and application of these color centers this is a major breakthrough. This work is also important for the field of crystallography, which now has another method at hand to study crystal structures locally.

That nitrogen-vacancies fluoresce after excitation with laser pulses also makes them attractive for a different research field: biological fluorescence nanoscopy. Scientists plan to reveal a live cell's secrets using fluorescent diamonds, requiring tiny diamond nano particles which can be used for labeling cells."Organic fluorescent dyes, which we routinely use for STED, have the disadvantage that they blink and eventually bleach", says Eva Rittweger, a PhD student in the department. "However, color centers in diamonds are extremely photostable even when observed for hours in the STED microscope."

Research groups in Würzburg, Stuttgart, as well as in Asia and America are working on applying the nanocrystals to biological and medical fundamental research. "If we are successful in exploiting this property in nanodiamonds, one would have a new class of fluorescent markers and a form of fluorescence nanoscopy without bleaching. This could, in combination with the nanometric resolution of STED microscopy, improve imaging of the cell at the nanoscale", says Stefan Hell.

Original publication:
Eva Rittweger, Kyu Young Han, Scott E. Irvine, Christian Eggeling, and Stefan W. Hell. STED microscopy reveals crystal colour centres wit nanometric resolution. Nature Photonics, Online Publication, February 25, 2009 | doi:10.1038/nphoton.2009.2
Prof. Dr. Stefan W. Hell, Department of NanoBiophotonics
Max Planck Institute for Biophysical Chemistry, Göttingen
Phone: +49 551 201 -2500, -2503
Dr. Carmen Rotte, Press and public relations office
Max Planck Institute for Biophysical Chemistry, Göttingen
Phone: +49 551 201 -1304

Dr. Carmen Rotte | Max-Planck-Institut
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>