Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking down volatile mercury in the Atlantic

24.10.2011
Marine chemists from Warnemünde identify unexpected places and seasons of higher emission.

For the first time, mercury emissions of the Atlantic Ocean were investigated by comprehensive measurements, performed under the leadership of researchers from the Leibniz Institute of Baltic Sea Research in Warnemünde.

The scientists Joachim Kuss, Christoph Zülicke, Christa Pohl and Bernd Schneider sought to answer two questions: 1. What role do the seasons play in the processes that cause mercury to be released by the oceans as a volatile gas? 2. What is the spatial distribution of mercury in the Atlantic Ocean?

Mercury is potentially harmful to both humans and animals. To understand its behavior in the environment is therefore of great societal interest. However, although the amount of mercury circulating in the environment has been tripled by human activities, broad-ranging and long-term research programs have yet to completely elucidate the steps comprising the mercury cycle.

Mercury is mainly emitted into the atmosphere and subsequently distributed worldwide as volatile elemental mercury. Within the atmosphere, mercury is slowly oxidized and then becomes bound to dust particles. Rainfall washes the dust together with the bound mercury out of the atmosphere, with subsequent transport of the heavy metal into the oceans. While many other such metals partially exit the cycle, sinking to the sea floor attached to particles, mercury can be converted back to the volatile elemental form by exposure to light, either with or without the involvement of algae. By this route, it escapes the oceans and is distributed further. The amount of mercury that is actually emitted is difficult to determine and to date only few measurement data have been available.

During two research cruises with the r/v Polarstern, traveling between the English Channel and South Africa and – half a year later – from southern South America to Germany, an intensive measuring campaign was undertaken to determine the concentration of volatile mercury both in the surface waters and in the atmosphere.

For the IOW researchers, it was astonishing to recognize that, in contrast to their expectations, most of the elemental mercury was not found in the industrialized temperate zone of the Northern hemisphere but in the tropical zone of the Atlantic Ocean.

According to Joachim Kuss and his colleagues, this fact can be explained by the underlying conditions, which strongly favor the production of volatile mercury. The tropical climate promotes the emission of mercury in a process made up of several successive steps.

Strong tropical rainfalls cause oxidized mercury to be washed out of the atmosphere into the ocean in a very effective manner. Afterwards, intense solar radiation converts the mercury into its volatile form, which in turn concentrates within the upper 20 m of the tropical Atlantic. However, mercury emission is not initiated until the winds become stronger. This task is fulfilled by the powerful trade winds once they pass over those regions of the sea in which the surface waters are enriched in mercury. Thus, year-round, the tropical Atlantic provides the optimum prerequisites allowing the escape of mercury.

The observations resulted in another new hypothesis: until now, researchers working on atmospheric models assumed that the seasonal emission of mercury from the oceans is caused by solar radiation and the activity of algae.

According to the new measurements, however, the presumed overall coupling to algal growth seems to be incorrect, as it would require very strong emissions coinciding with the peak of the bloom. But during the springtime bloom (April/May in the North Atlantic; November in the South Atlantic) no increase in mercury emissions was detected. Instead, high-level emissions were found to occur in autumn (November in the North Atlantic; April/May in the South Atlantic).

The comprehensive measurements performed by the IOW scientists were used to estimate annual global mercury emissions. According to these projections, two million kilograms of mercury are emitted annually by the global oceans. This nearly equals the total annual anthropogenic emissions and is in good accordance with theoretical predictions derived from atmospheric models. However, deviations are clearly evident with respect to the seasonal and spatial contributions of the processes. While the results of the Warnemünde researchers provide new insight in this context, further global measuring campaigns and local-process studies are required for a deeper understanding of the marine mercury cycle.

Contact:
Dr. Joachim Kuss, +49 381 / 5197 314
Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde
oder
Dr. Barbara Hentzsch, +49 381 / 5197 102
Public relation officer, Leibniz Institute for Baltic Sea Research Warnemünde
The IOW is member of the Leibniz Association, a network of 87 scientifically, legally and economically independent research institutes and scientific service facilities. Leibniz Institutes perform strategic-and thematically-oriented research and offer scientific services of national significance while striving to provide scientific solutions to major social challenges.

The 16,800 employees of the Leibniz Institutes include 7,800 academics, with 3,300 junior scientists. One indication of the Leibniz Institutes' strong competitiveness and excellence is the 330 million Euros allocated to them from third-party funds. The total budget of all Leibniz Institutes amounts to more than 1.4 billion Euros.

Leibniz Institutes contribute to clusters of excellence in fields such as mathematics, optic technologies, materials research, medicine, climate and environmental research, and bio- and nanotechnology as well as the humanities, economics, and social sciences. They foster close co-operations with universities, industry, and other research institutes, both in Germany and abroad. The Leibniz Association has developed a comprehensive system of quality management in which, at regular intervals, independent experts assess every institute as part of the Association's unique peer review evaluation process.

www.leibniz-association.eu

Dr. Barbara Hentzsch | idw
Further information:
http://www.leibniz-association.eu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>