Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking the HI Virus with High-resolution Microscopy

09.04.2014

BMBF funds joint project to develop new microscopy methods

Experts from science and industry are working on new methods of microscopy and advancing microscopy technology to improve our ability to study and understand the molecular processes of HIV infection.

Last year, the Federal Ministry of Education and Research (BMBF) approved approx. 4.6 million euros for this joint project called “Chemical Switches and Click Chemistry for High-resolution Microscopy”. Meanwhile preparations for the start of the project are complete.

The three-year “Switch Click Microscopy” project will involve scientists from Heidelberg University and Heidelberg University Hospital, the University of Würzburg, the European Molecular Biology Laboratory in Heidelberg as well as experts from four companies. The project coordinator is Prof. Dr. Dirk-Peter Herten, a member of the CellNetworks Cluster of Excellence who also works at the Institute for Physical Chemistry at Heidelberg University.

As Prof. Herten explains, there are more than 35 million people worldwide living with the human immunodeficiency virus HIV. “AIDS, the acquired immunodeficiency syndrome this virus causes, is now quite treatable in the industrialised world.

But the lifelong treatment with medication has to be continually adjusted. Because the virus is constantly changing, new treatment strategies are needed,” continues the Heidelberg scientist.

“By shedding light on how the virus functions and propagates, we can target our research to develop specific methods for diagnosis and treatment.” Researchers in the joint project are particularly focussed on changes in the T-cells of the immune system effected by the HIV Nef protein. In order to better investigate these processes, the team intends to greatly expand on previous methods of light microscopy.

“The key is the development of new fluorescent probes,” explains Prof. Herten. A new type of direct protein labelling should substantially improve the microscopic image and allow biological structures to be reconstructed in 3D super-resolution. To this end, the scientists intend to synthesise fluorescent probes whose properties can be controlled through chemical reactions.

“The goal is to selectively control the fluorescence by adding certain reagents,” stresses the project coordinator. “The new approach to super-resolution fluorescent microscopy can then function independently of light-driven processes.” Furthermore, the methods for protein labelling are to be improved to prevent artefacts and unspecific signals in the imaging.

The researchers are also targeting new developments in the field of microscopy technology, including methods to simplify adding reagents during microscopy as well as new light sources whose output and wavelengths are attuned to the newly developed fluorescent dyes.

Another field of endeavour are optical technologies that permit three-dimensional super-resolution imaging. According to Prof. Herten, these technical enhancements are to be based on standard microscopy systems to ensure wide-ranging and cost-efficient use. “Improving microscopic imaging makes understanding the biological processes surrounding the HIV immunodeficiency virus easier. This knowledge will allow us to focus the search for new AIDS drugs much more effectively.“

The industrial partners in the project include ATTO-TEC GmbH in Siegen, Sirius Fine Chemicals SiChem GmbH in Bremen als well as FEI Munich GmbH and TOPTICA Photonics AG in Munich. The research work at Heidelberg University will be supported through BMBF funds in the amount of approx. 670,000 euros.

Internet information:
http://www.bioquant.uni-heidelberg.de/research/groups/single_molecule_spectroscopy.html
http://www.photonikforschung.de/forschungsfelder/biophotonik/ultrasensitiver-nachweis-und-manipulation-vonin-zellen

Contact:
Adjunct Professor Dr. Dirk-Peter Herten
CellNetworks Cluster of Excellence
Institute for Physical Chemistry
Phone: +49 6221 54-51220
dirk.herten@bioquant.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>