Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking the HI Virus with High-resolution Microscopy

09.04.2014

BMBF funds joint project to develop new microscopy methods

Experts from science and industry are working on new methods of microscopy and advancing microscopy technology to improve our ability to study and understand the molecular processes of HIV infection.

Last year, the Federal Ministry of Education and Research (BMBF) approved approx. 4.6 million euros for this joint project called “Chemical Switches and Click Chemistry for High-resolution Microscopy”. Meanwhile preparations for the start of the project are complete.

The three-year “Switch Click Microscopy” project will involve scientists from Heidelberg University and Heidelberg University Hospital, the University of Würzburg, the European Molecular Biology Laboratory in Heidelberg as well as experts from four companies. The project coordinator is Prof. Dr. Dirk-Peter Herten, a member of the CellNetworks Cluster of Excellence who also works at the Institute for Physical Chemistry at Heidelberg University.

As Prof. Herten explains, there are more than 35 million people worldwide living with the human immunodeficiency virus HIV. “AIDS, the acquired immunodeficiency syndrome this virus causes, is now quite treatable in the industrialised world.

But the lifelong treatment with medication has to be continually adjusted. Because the virus is constantly changing, new treatment strategies are needed,” continues the Heidelberg scientist.

“By shedding light on how the virus functions and propagates, we can target our research to develop specific methods for diagnosis and treatment.” Researchers in the joint project are particularly focussed on changes in the T-cells of the immune system effected by the HIV Nef protein. In order to better investigate these processes, the team intends to greatly expand on previous methods of light microscopy.

“The key is the development of new fluorescent probes,” explains Prof. Herten. A new type of direct protein labelling should substantially improve the microscopic image and allow biological structures to be reconstructed in 3D super-resolution. To this end, the scientists intend to synthesise fluorescent probes whose properties can be controlled through chemical reactions.

“The goal is to selectively control the fluorescence by adding certain reagents,” stresses the project coordinator. “The new approach to super-resolution fluorescent microscopy can then function independently of light-driven processes.” Furthermore, the methods for protein labelling are to be improved to prevent artefacts and unspecific signals in the imaging.

The researchers are also targeting new developments in the field of microscopy technology, including methods to simplify adding reagents during microscopy as well as new light sources whose output and wavelengths are attuned to the newly developed fluorescent dyes.

Another field of endeavour are optical technologies that permit three-dimensional super-resolution imaging. According to Prof. Herten, these technical enhancements are to be based on standard microscopy systems to ensure wide-ranging and cost-efficient use. “Improving microscopic imaging makes understanding the biological processes surrounding the HIV immunodeficiency virus easier. This knowledge will allow us to focus the search for new AIDS drugs much more effectively.“

The industrial partners in the project include ATTO-TEC GmbH in Siegen, Sirius Fine Chemicals SiChem GmbH in Bremen als well as FEI Munich GmbH and TOPTICA Photonics AG in Munich. The research work at Heidelberg University will be supported through BMBF funds in the amount of approx. 670,000 euros.

Internet information:
http://www.bioquant.uni-heidelberg.de/research/groups/single_molecule_spectroscopy.html
http://www.photonikforschung.de/forschungsfelder/biophotonik/ultrasensitiver-nachweis-und-manipulation-vonin-zellen

Contact:
Adjunct Professor Dr. Dirk-Peter Herten
CellNetworks Cluster of Excellence
Institute for Physical Chemistry
Phone: +49 6221 54-51220
dirk.herten@bioquant.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Novel 'repair system' discovered in algae may yield new tools for biotechnology
29.07.2016 | Boyce Thompson Institute

nachricht Molecular troublemakers instead of antibiotics?
29.07.2016 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>