Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tracking the HI Virus with High-resolution Microscopy


BMBF funds joint project to develop new microscopy methods

Experts from science and industry are working on new methods of microscopy and advancing microscopy technology to improve our ability to study and understand the molecular processes of HIV infection.

Last year, the Federal Ministry of Education and Research (BMBF) approved approx. 4.6 million euros for this joint project called “Chemical Switches and Click Chemistry for High-resolution Microscopy”. Meanwhile preparations for the start of the project are complete.

The three-year “Switch Click Microscopy” project will involve scientists from Heidelberg University and Heidelberg University Hospital, the University of Würzburg, the European Molecular Biology Laboratory in Heidelberg as well as experts from four companies. The project coordinator is Prof. Dr. Dirk-Peter Herten, a member of the CellNetworks Cluster of Excellence who also works at the Institute for Physical Chemistry at Heidelberg University.

As Prof. Herten explains, there are more than 35 million people worldwide living with the human immunodeficiency virus HIV. “AIDS, the acquired immunodeficiency syndrome this virus causes, is now quite treatable in the industrialised world.

But the lifelong treatment with medication has to be continually adjusted. Because the virus is constantly changing, new treatment strategies are needed,” continues the Heidelberg scientist.

“By shedding light on how the virus functions and propagates, we can target our research to develop specific methods for diagnosis and treatment.” Researchers in the joint project are particularly focussed on changes in the T-cells of the immune system effected by the HIV Nef protein. In order to better investigate these processes, the team intends to greatly expand on previous methods of light microscopy.

“The key is the development of new fluorescent probes,” explains Prof. Herten. A new type of direct protein labelling should substantially improve the microscopic image and allow biological structures to be reconstructed in 3D super-resolution. To this end, the scientists intend to synthesise fluorescent probes whose properties can be controlled through chemical reactions.

“The goal is to selectively control the fluorescence by adding certain reagents,” stresses the project coordinator. “The new approach to super-resolution fluorescent microscopy can then function independently of light-driven processes.” Furthermore, the methods for protein labelling are to be improved to prevent artefacts and unspecific signals in the imaging.

The researchers are also targeting new developments in the field of microscopy technology, including methods to simplify adding reagents during microscopy as well as new light sources whose output and wavelengths are attuned to the newly developed fluorescent dyes.

Another field of endeavour are optical technologies that permit three-dimensional super-resolution imaging. According to Prof. Herten, these technical enhancements are to be based on standard microscopy systems to ensure wide-ranging and cost-efficient use. “Improving microscopic imaging makes understanding the biological processes surrounding the HIV immunodeficiency virus easier. This knowledge will allow us to focus the search for new AIDS drugs much more effectively.“

The industrial partners in the project include ATTO-TEC GmbH in Siegen, Sirius Fine Chemicals SiChem GmbH in Bremen als well as FEI Munich GmbH and TOPTICA Photonics AG in Munich. The research work at Heidelberg University will be supported through BMBF funds in the amount of approx. 670,000 euros.

Internet information:

Adjunct Professor Dr. Dirk-Peter Herten
CellNetworks Cluster of Excellence
Institute for Physical Chemistry
Phone: +49 6221 54-51220

Communications and Marketing
Press Office, phone: +49 6221 54-2311

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Two decades of training students and experts in tracking infectious disease
27.11.2015 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Increased carbon dioxide enhances plankton growth, opposite of what was expected
27.11.2015 | Bigelow Laboratory for Ocean Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>