Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking down smallest biomarkers

27.11.2012
PTB and Dectris have developed a vacuum-compatible X-ray detector that allows the size of low-contrast nano-objects to be determined.

Microvesicles are smallest cell elements which are present in all body fluids and are different, depending on whether a person is healthy or sick. This could contribute to detecting numerous diseases, such as, e.g., carcinomas, at an early stage, and to treating them more efficiently.


Small-angle X-ray scattering of a micro-vesicle sample (multilamellar liposomes) using the vacuum-compatible Pilatus detector, image recorded at a photon energy of 3 keV. The scattering pattern allows the dimensions of the nano-objects in the examined sample to be determined. (Fig.: PTB)

The problem is that the diameter of the relevant microvesicles generally lies below 100 nm, which makes them technically detectable, but their exact size and concentration hardly possible to determine. A new device is now to provide the metrological basis for these promising biomarkers.

The vacuum-compatible version of the Pilatus hybrid pixel detector for X-rays, which was developed by Dectris in cooperation with the Physikalisch-Technische Bundesanstalt (PTB), now allows also the size of nano-particles - which, to date, have been difficult to characterize - to be determined using small-angle X-ray scattering at low photon energies. The detector can also be used for other X-ray-based techniques.

What makes this detector unique is the size of its total surface (17 cm × 18 cm) as well as the fact that it can be operated in vacuum. Operating the detector in vacuum drastically increases the sensitivity of the measuring facility, since the soft X-rays, which are scattered on the sample, are not absorbed by air molecules on their way towards the detector.

This device now allows, for example, experiments for size determination of nanoparticles to be carried out with small-angle X-ray scattering (SAXS) also at the absorption edges of the light elements calcium, sulphur, phosphor or silicon at photon energies below 5 keV with high dynamics and good spatial resolution.

For a few months, the new Pilatus X-ray detector has been used for some of PTB's own research projects. At the synchrotron radiation source BESSY II in Berlin-Adlershof, where PTB has been operating its own laboratory for 15 years, scientists are now using the new detector, for example, to establish the - urgently needed - metrological basis for the size determination of microvesicles.

A project carried out within the scope of the European Metrology Research Programme (EMRP) and with the significant participation of the Amsterdam Medical Center in the Netherlands is to contribute decisively to fully exploiting the potential of microvesicles for the early diagnosis of diseases

For further information about the detector, please visit:
http://www.ptb.de/cms/nc/en/fachabteilungen/abt7/news-7/single-view.html?tx_ttnews[tt_news]=5214&tx_ttnews[backPid]=85&cHash=2b2e374f28a2b5eea11d24c8d9193736
https://www.dectris.com/successstories/items/In-vacuum-P1M-PTB_SuccStory.html#In-vacuum-P1M-PTB_SuccStory

For further information about the characterization of microvesicles, please visit:
http://www.euramet.org/fileadmin/docs/EMRP/JRP/JRP_Summaries_2011/Health_
JRPs/HLT02_Publishable_JRP_Summary.pdf

Contact:

Michael Krumrey,
PTB Working Group 7.11 "X-ray Radiometry",
phone: +49 (0)30 3481-7110,
e-mail: michael.krumrey@ptb.de
(untill 3. December contact is only possible by e-mail)

Michael Krumrey | EurekAlert!
Further information:
http://www.ptb.de

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>