Tracking the molecular pathway to mixed-lineage leukemia

When the MLL gene is fused to the AF4 gene, a potent cancer-causing oncogene is created. Although researchers have known that the MLL-AF4 protein produced by this genetic fusion causes leukemia, they had not been able to determine precisely how this oncogene disrupted cells' normal protein production.

To pinpoint the oncogene's activities, Matthew Guenther, a postdoctoral researcher in Whitehead Member Richard Young's lab, used a technique called ChIP-seq (chromatin immunoprecipitation with DNA sequencing) to map where the MLL-AF4 protein interacts with a cell's genome. He found that in cancer cells the MLL-AF4 protein binds to at least 169 genes, many of which are overexpressed in leukemia cells and encode hematopoietic stem cell regulators (the genes that initiate blood cell production).

It seems that when the MLL-AF4 protein interacts with these genes, it forces them into a hyperactive state, with disastrous consequences.

“The MLL-AF4 fusion protein is somehow targeted to a set of genes that essentially hijacks the blood stem cell machinery and makes that cell become cancerous, basically a younger-looking cell that is dividing much more than it should,” says Guenther.

Looking closer at the MLL-AF4 protein-bound genes, Guenther noticed that these genes display strange patterns of chromatin proteins. In the cell, DNA is wrapped around chromatin proteins for dual purposes: to safely package DNA for cell division and to control gene expression (epigenetics). Changes in chromatin structures can affect normal gene expression, and other studies have linked chromatin misregulation to cancer and to leukemia disease progression. In MLL patients, it seems the MLL-AF4 protein alters the normal chromatin state of the hematopoietic stem cell regulators.

Guenther's findings may take scientists one step closer to a treatment for this deadly disease.

“We think we've figured out a key piece of how this leukemia works,” says Young. “If we understand the molecular pathway for how the MLL-AF4 protein interacts with genes, it gives us a set of new target genes that might be used for drug development.”

Media Contact

Nicole Giese EurekAlert!

More Information:

http://www.wi.mit.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Memory Self-Test via Smartphone

… Can Identify Early Signs of Alzheimer’s disease. Dedicated memory tests on smartphones enable the detection of “mild cognitive impairment”, a condition that may indicate Alzheimer’s disease, with high accuracy….

The Sound of the Perfect Coating

Fraunhofer IWS Transfers Laser-based Sound Analysis of Surfaces into Industrial Practice with “LAwave”. Sound waves can reveal surface properties. Parameters such as surface or coating quality of components can be…

Customized silicon chips

…from Saxony for material characterization of printed electronics. How efficient are new materials? Does changing the properties lead to better conductivity? The Fraunhofer Institute for Photonic Microsystems IPMS develops and…

Partners & Sponsors