Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking the molecular pathway to mixed-lineage leukemia

17.12.2008
Infants and adults with the blood cancer mixed-lineage leukemia (MLL) typically have a poor prognosis, and most infants die before their first birthdays. Although there are varying causes of MLL, most cases are caused by a fusion of two genes, the MLL and the AF4 genes.

When the MLL gene is fused to the AF4 gene, a potent cancer-causing oncogene is created. Although researchers have known that the MLL-AF4 protein produced by this genetic fusion causes leukemia, they had not been able to determine precisely how this oncogene disrupted cells' normal protein production.

To pinpoint the oncogene's activities, Matthew Guenther, a postdoctoral researcher in Whitehead Member Richard Young's lab, used a technique called ChIP-seq (chromatin immunoprecipitation with DNA sequencing) to map where the MLL-AF4 protein interacts with a cell's genome. He found that in cancer cells the MLL-AF4 protein binds to at least 169 genes, many of which are overexpressed in leukemia cells and encode hematopoietic stem cell regulators (the genes that initiate blood cell production).

It seems that when the MLL-AF4 protein interacts with these genes, it forces them into a hyperactive state, with disastrous consequences.

"The MLL-AF4 fusion protein is somehow targeted to a set of genes that essentially hijacks the blood stem cell machinery and makes that cell become cancerous, basically a younger-looking cell that is dividing much more than it should," says Guenther.

Looking closer at the MLL-AF4 protein-bound genes, Guenther noticed that these genes display strange patterns of chromatin proteins. In the cell, DNA is wrapped around chromatin proteins for dual purposes: to safely package DNA for cell division and to control gene expression (epigenetics). Changes in chromatin structures can affect normal gene expression, and other studies have linked chromatin misregulation to cancer and to leukemia disease progression. In MLL patients, it seems the MLL-AF4 protein alters the normal chromatin state of the hematopoietic stem cell regulators.

Guenther's findings may take scientists one step closer to a treatment for this deadly disease.

"We think we've figured out a key piece of how this leukemia works," says Young. "If we understand the molecular pathway for how the MLL-AF4 protein interacts with genes, it gives us a set of new target genes that might be used for drug development."

Nicole Giese | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

Discovery of a Key Regulatory Gene in Cardiac Valve Formation

24.05.2017 | Life Sciences

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>