Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking Individual Particles

13.03.2009
Electrochemical technique follows the motion of individual microparticles in space and time

Many bacteria are able to “swim” through liquids by means of a flagellum. When doing this, some bacteria follow attractants, some flee from harmful substances, and others align themselves using light, gravity, or magnetic fields.

These processes may also play a role in infections. Following a swimming bacterium without influencing its motion is difficult. Nanotechnology researchers are also interested in determining the motion of nanoparticles, which would be useful for the development of nanomotors, for example.

A team from the Universities of Oxford and Cambridge (UK) has now developed a new, electrochemical method for locating microscale objects as they move through a liquid. As they report in the journal Angewandte Chemie, researchers led by Richard G. Compton were able to use an array of microelectrodes to follow the two-dimensional motion of a tiny, individual basalt sphere in space and time.

The British researchers’ new process is based on a simple arrangement of four tiny electrodes (150×150 µm) at the bottom of a small cell. Each electrode can be addressed individually. In order to demonstrate that their approach works, the researchers carried out experiments with a basalt sphere with a diameter of about 330 µm. They used a magnet underneath the base of the cell to move the magnetic basalt sphere. The magnet was positioned by means of a stepper motor.

Inside the cell is a solution containing an electroactive compound. When the sphere comes close to one of the microelectrodes, it gets in the way of the molecules of this compound, which are trying to get to the electrode. This disruption of the diffusion field changes the current response of the electrode. The presence of the sphere is detectable up to a distance of 0.5 mm from the electrode.

The sphere was put into many different positions and the corresponding current response curves of the electrodes were recorded. At the same time, the researchers documented the corresponding positions of the spheres with video. This allowed them to calibrate their measurements so that the position of the spheres could be determined by means of the current response curves of the electrodes.

The researchers would now like to reduce the scale of their technique. They are developing electrode arrays for a spatial resolution at the submicrometer level, which would also allow them to follow significantly smaller particles with sub-microsecond resolution.

Author: Richard G. Compton, University of Oxford (UK), http://compton.chem.ox.ac.uk/contact/contact.htm

Title: A Method for the Positioning and Tracking of Small Moving Particles

Angewandte Chemie International Edition 2009, 48, No. 13, 2376–2378, doi: 10.1002/anie.200805428

Richard G. Compton | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://compton.chem.ox.ac.uk/contact/contact.htm

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>