Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking Down the Ash Tree Killer

21.03.2014

Volatile lactone of Hymenoscyphus pseudoalbidus inhibits germination of ash seeds

The leaves wilt, the crown dies off, the bark exhibits lesions, the wood becomes discolored – the ash forests of Europe are under threat. The perpetrator is an Asian fungus, and its progress is unstoppable. In order to develop effective countermeasures, the transmission pathway, progression of the disease, and propagation of the fungus must be clarified. German researchers have now identified a metabolic product of this killer fungus that inhibits the germination of ash seeds. In the journal Angewandte Chemie, they report on possible mechanisms for this activity.


Hymenoscyphus pseudoalbidus looks almost identical to its harmless relative, Hymenoscyphus albidus, but it causes heavy damage to the common ash, Fraxinus excelsior. Over the last two decades, this killer fungus from the Far East has rapidly spread from east to west across Europe, reaching the British Isles in 2012. There is no decline of the disease in sight. Only a small subpopulation of European ash trees seems to be resistant to this fungus, but it is unclear whether this portion is large enough to ensure the survival of this ecologically and economically important tree species, which is found in nearly all of Europe and parts of Asia around the Black Sea.

A team led by Jeroen S. Dickschat at the Technische Universität Braunschweig has extracted the volatile and nonvolatile metabolic products of the fungus and studied them by spectroscopic methods. The researchers found a suspect among the volatile compounds: in laboratory experiments, the lactone 3,4-dimethylpentan-4-olide inhibits the germination of ash seeds and causes necrosis.

Surprisingly, this compound is also found in nonpathogenic fungi. “Metabolites from the plants may play a role here by regulating the production of the lactone differently in different species of fungus,” suggests Dickschat. “This could also explain why Japanese ash trees are not affected by this fungus and some individuals of the European ash are also relatively resistant.” Another explanation could be the interaction between the lactone and certain microorganisms that are found in the European ash. “Such a mechanism would allow endophytes to act as mediators between the plant and its pathogen,” explains Dickschat. “A comparable mechanism has previously been discovered in another case: Lactones in the smoke produced by burning plants promote germination through a process in which interactions with plant bacteria might play a critical role.”

These new discoveries are important milestones in understanding ash dieback and possible mechanisms of resistance in the unaffected populations of ash. Says Dickschat: “The identification of the lactone as the virulence factor will hopefully pave the way for control of a pathogen that currently threatens the entire population of ash trees in Europe.”

About the Author

Dr. Jeroen S. Dickschat is Assitant Professor of Organic Chemistry at the Technical University of Braunschweig and recipient of the Dechema Young Scientists' Award for Natural Product Research 2014. His research interests focus on the biosynthesis and function of volatile natural products from microorganisms.

Author: Jeroen S. Dickschat, Technische Universtiät Braunschweig (Germany), http://www.oc.tu-bs.de/dickschat/jdickschat_de.html

Title: A Volatile Lactone of Hymenoscyphus pseudoalbidus, Pathogen of European Ash Dieback, Inhibits Host Germination

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201402290

Jeroen S. Dickschat | Angewandte Chemie

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>