Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking breast cancer cells on the move

14.06.2012
An important gene for bone metastasis

Breast cancer cells frequently move from their primary site and invade bone, decreasing a patient's chance of survival.

This process of metastasis is complex, and factors both within the breast cancer cells and within the new bone environment play a role. In next week's Journal of Biological Chemistry "Paper of the Week," Roger Gomis and colleagues at the Institute for Research in Biomedicine in Spain investigated how breast cancer cells migrate to bone.

In particular, they examined the role of NOG, a gene important to proper bone development. Previously, NOG was associated with bone metastasis in prostate cancer, but its specific role in breast cancer to bone metastasis remained unknown.

Gomis and colleagues showed that once breast cancer cells are on the move NOG enables them to specifically invade the bone and establish a tumor. It does this in two ways. First, NOG escalates bone degeneration by increasing the number of mature osteoclasts (bone cells that break down bone), essentially creating a spot in the bone for the metastatic breast cancer cells to take up residence. Second, NOG keeps the metastatic breast cancer cells in a stem-cell-like state, which enables them to propagate and form a new tumor in the bone environment.

Gomis explains that the reason NOG expression leads to an increased potential for breast cancer to bone metastasis is because it not only affects features inherent to aggressive cancer cells (such as the ability to establish a new tumor) but also influences properties of the bone environment (such as osteoclast degeneration of bone).

From the article: "Identification of NOG as a specific breast cancer bone metastasis-supporting gene" by Maria Tarragona, Milica Pavlovic, Anna Arnal-Estapé, Jelena Urosevic, Mònica Morales, Marc Guiu, Evarist Planet, Eva González-Suárez, Roger R. Gomis

Link to "Paper in Press": http://www.jbc.org/content/early/2012/04/30/jbc.M112.355834.full.pdf+html

Corresponding author: Roger R. Gomis, Oncology Programme, Institute for Research in Biomedicine in Barcelona, Spain; e-mail: roger.gomis@irbbarcelona.org

About the American Society for Biochemistry and Molecular Biology
The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit www.asbmb.org.

Angela Hopp | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>