Tracing the Traces

Drinking water can transmit a number of diseases, including typhoid, dysentery, cholera, and diarrhea, which can then spread explosively throughout an entire service area. To avoid this problem, drinking water must be disinfected.

After treatment and disinfection, the water is usually safe. To manage the disease risk until it reaches the tap, most waterworks throughout the world use chlorine or chlorine-containing chemicals for disinfection. Beneficial though the chlorination of water may be, it does have one potential drawback: studies have suggested that there may be a connection between the ingestion of chlorinated tap water and an increased risk of bladder cancer.

Scientists at the University of Alberta in Canada have now revealed a chlorination by-product of great interest: As the team led by Xing-Fang Li reports in the journal Angewandte Chemie, they were able to detect traces of the toxic compound dichloroquinone.

Chlorination has been use to disinfect water for decades. Through reactions with natural organic molecules in the water, it can lead to formation of trace amounts of toxic by-products, such as chloroform and halogenated acetic acid derivatives. The maximum allowed concentrations of these substances were legally regulated some years ago. Newer studies have suggested that these substances are not likely to pose a cancer risk. Instead, other possible by-products, such as halogenated quinones, which may be present in treated water at previously undetectable concentrations, are now under suspicion. Quinones are six-membered carbon rings with two oxygen atoms bound by double bonds to opposite ends of the molecule, and they occur in some microorganisms. Quinones that also contain halogen atoms such as chlorine or bromine may react with DNA and proteins at very low concentrations, causing damage to organisms.

The Canadian team has now been the first to successfully identify a representative of this class of compounds, 2,6-dichloro-1,4-benzoquinone, in chlorinated drinking water. To accomplish this, the researchers had to develop a special analytical procedure based on liquid chromatography (LC), electrospray ionization (ESI), and tandem mass spectrometry (tandem-MS). In actual water samples, they used this technique to detect this compound in quantities of a few nanograms per liter of water. The toxicology of some chloroquinones indicates that they could pose a risk of bladder cancer.

Author: Xing-Fang Li, University of Alberta, Edmonton (Canada), http://www.ualberta.ca/~xingfang/contact.html

Title: A Toxic Disinfection By-product, 2,6-Dichloro-1,4-benzoquinone, Identified in Drinking Water

Angewandte Chemie International Edition 2010, 49, No. 4, Permalink: http://dx.doi.org/10.1002/anie.200904934

Media Contact

Xing-Fang Li Angewandte Chemie

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors