Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracing the Molecular Causes of Preeclampsia – a Life-threatening Disease for Mother and Child

10.09.2012
Preeclampsia is one of the most dangerous conditions for the expectant mother and the unborn child and is characterized by elevated blood pressure and protein in the urine in the last trimester of pregnancy.
The cause for this life-threatening disease has long remained elusive. Recently however, Dr. Ananth Karumanchi (Associate Professor of Medicine, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, , USA) has identified a new molecular pathway that leads to preeclampsia in humans and thus creating new avenues for the development of a therapy, he reported at the 1st ECRC Franz Volhard Symposium on September 8, 2012 at the Max Delbrück Center (MDC) Berlin-Buch.

“Preeclampsia is among the three diseases that cause death amongst mothers, their unborn and newly born babies, accounting for nearly 70,000 maternal deaths a year worldwide,” Dr. Karumanchi pointed out in Berlin. The other two are severe bleeding and infection. Researchers suspect that the number of deaths caused by preeclampsia is underreported and is actually much higher. “Preeclampsia is especially lethal in the underdeveloped world where medical care and facilities for emergencies and for caring for premature babies are lacking,” Dr. Karumanchi said. Therefore, the death rate among those newborns is clearly higher than in countries with better medical care.

However, preeclampsia is a serious problem in industrialized countries, too. In Germany, for example, every year more than 20,000 babies are born prematurely due to preeclampsia. “In fact preeclampsia is among the leading causes of prematurely born babies,” Dr. Karumanchi stressed. As each additional week in the uterus of the mother lowers fetal morbidity and mortality, physicians strive to prolong pregnancy without compromising the safety of the mother.

If the condition becomes too dangerous for the pregnant woman, they intervene and induce labor. As soon as the child is born, the mother’s symptoms disappear. But later in life the mothers can develop heart disease, hypertension and thyroid disorders due to preeclampsia. And premature babies run the risk, if they survive, of life-long disability.

Findings on molecular causes open up avenues for early diagnosis as well as therapy

Dr. Karumanchi was able to show that the placenta, the organ in the uterus which nourishes the embryo and the fetus, plays an important role in the onset of preeclampsia. It releases two different proteins. One of the proteins, the PlGF (placental growth factor) makes blood vessels grow towards the placenta. It is an angiogenisis factor which is part of the VEGF family, a large group of proteins that induces blood vessel growth. The antagonist to PlGF is sFlt-1 (soluble fms-like tyrosine kinase-1). It binds to PlGF and inhibits blood vessel growth. The levels of these two proteins in the blood of the pregnant women must be in balance for mother and unborn baby to stay healthy.

Dr. Karumanchi’s team discovered that pregnant women with preeclampsia have too much sFlt-1 circulating in their blood, and too little PlGF. As a result the placenta is no longer well supplied with blood, and the fetus does not get enough nutrients. Also, lack of PlGF constricts the blood vessels, and the expectant mother’s blood pressure becomes elevated – the main symptom of preeclampsia. As the kidneys are affected, too, the patient develops proteinuria, characterized by too much protein in the urine.

Whereas formerly preeclampsia in pregnant women could only be diagnosed by these symptoms – hypertension and proteinuria – the findings of Dr. Karumanchi now make it possible to detect preeclampsia at a very early stage, even before the first symptoms appear. Researchers and clinicians measure sFlt-1 and PlGF levels and they can determine if sFLT-1 levels are too high. They can then monitor the expectant mothers at a very early stage and help prevent the disease from progressing in order to avoid seizures and liver failure.

Dr. Karumanchi’s research has already led to the first step to treat the disease through extracorporeal removal of excessive sFLT-1 from the blood. In a pilot study, Professor Ravi Thadhani (a colleague of his at Harvard Medical School) working with nephrologists and obstetricians in Germany (Cologne and Leipzig), showed last year that a single treatment of five pregnant women with preeclampsia lowered elevated levels of sFLt-1 in the blood. Repeated treatment of three additional patients with preeclampsia in the early onset of pregnancy (28, 27, 30 weeks of pregnancy) could reduce not only sFlt-1 but also proteinuria and stabilize blood pressure without apparent adverse events to either mother or fetus. In addition, the obstetricians were able to prolong pregnancy duration thus allowing the delivery of healthier babies. Dr. Karumanchi stressed that further studies are necessary to determine whether this intervention safely and effectively prolongs pregnancy and improves the condition of mother and child.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>