Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracing microbes between individuals towards personalized oral health care

13.12.2010
The human body is home to a complex ecosystem of microbes increasingly recognized as having a critical role in both health and disease.

Viruses can attack and change the composition of bacterial communities, yet little is known about how this might influence human health. In a study published online today in Genome Research (www.genome.org), scientists have performed the first metagenomic analysis of a bacterial immune system in humans over time, finding that the defenses of the oral microbiome are unique and traceable, information that could help personalize oral health care in the future.

With recent advances in sequencing technologies, researchers are now sampling the genetic diversity of entire microbial and viral communities at once, including those residing within us. Recent studies have investigated viral communities of the respiratory and digestive tracts, suggesting that viruses might influence the microbial ecosystem and health of the human host. Less is known about how viruses affect the oral microbiome, which could have significant implications for diseases of the oral cavity.

A strategy for monitoring the interaction between bacterial communities and viruses is to sequence specific bacterial DNA elements that confer acquired immunity against viral attack, called clustered regularly interspaced short palindromic repeats (CRISPRs). Bacteria integrate foreign DNA from encountered pathogens into "spacers" between the repeats, using the spacers to later recognize and respond to the attacker.

In this study, a team of scientists has for the first time analyzed the evolution of the CRISPR bacterial immune system over time in the human body, specifically investigating the oral microbiome. "We knew that bacteria developed specific resistance to viruses," said David Pride of the University of California, San Diego and lead author of the report, "but before this study, we had no idea of the extent to which certain oral bacteria in humans have utilized these resistance mechanisms against viruses."

Pride and colleagues obtained saliva samples from four healthy subjects over the course of 17 months, sequencing CRISPR elements from multiple streptococcal bacteria, the predominant oral community members in many people. The team's analysis of CRISPR repeat and spacer sequences revealed that although there is a set of CRISPRs maintained within each subject over time, ranging from 7% to 22%, there was a remarkable amount of change observed even in short periods.

"Each time we sampled our human subjects, approximately one-third of the immune repertoire in the bacterial community was new," Pride explained, "which suggests that the development of resistance to viruses is occurring at least on a daily basis, if not more frequently."

Pride added that because the bacterial immune repertoire was traceable within the individuals over time, they should be able to track the system within each person and also track bacteria passed between subjects.

"Because these immune features can be used to track bacteria and their respective viruses in humans," Pride said, "it may open to door to more personalized oral health care, where lineages of microbes are traced as a part of routine health care for individuals."

Scientists from the University of California, San Diego (La Jolla, CA), the University of California, Berkeley (Berkeley, CA), the Stanford University School of Medicine (Stanford, CA), and the University of California, San Francisco (San Francisco, CA) contributed to this study.

This work was supported by the Robert Wood Johnson Foundation, the UNCF-Merck Science Initiative, the Burroughs Wellcome Fund, and the National Institutes of Health Director's Pioneer Award.

Media contacts: The authors are available for more information by contacting Debra Kain, Director of Press and Media Relations in the UC San Diego Health Sciences Marketing & Communications office (+1-619-543-6163; ddkain@ucsd.edu).

Interested reporters may obtain copies of the manuscript from Peggy Calicchia, Editorial Secretary, Genome Research (calicchi@cshl.edu; +1-516-422-4012).

About the article: The manuscript will be published online ahead of print on December 13, 2010. Its full citation is as follows: Pride DT, Sun CL, Salzman J, Rao N, Loomer P, Armitage GC, Banfield JF, Relman DA. Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time. Genome Res doi:10.1101/gr.111732.110.

About Genome Research:

Launched in 1995, Genome Research (www.genome.org) is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine. Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.

About Cold Spring Harbor Laboratory Press:

Cold Spring Harbor Laboratory is a private, nonprofit institution in New York that conducts research in cancer and other life sciences and has a variety of educational programs. Its Press, originating in 1933, is the largest of the Laboratory's five education divisions and is a publisher of books, journals, and electronic media for scientists, students, and the general public.

Genome Research issues press releases to highlight significant research studies that are published in the journal.

Peggy Calicchia | EurekAlert!
Further information:
http://www.cshl.edu

Further reports about: CRISPR DNA Genom Genome Research Harbor health care health services immune system

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>