Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toxoplasma infection permanently shifts balance in cat and mouse game

19.09.2013
Protozoan parasite makes lasting changes in brain, making mice fearless

The Toxoplasma parasite can be deadly, causing spontaneous abortion in pregnant women or killing immune-compromised patients, but it has even stranger effects in mice.


A mouse infected with the Toxoplasma parasite loses its fear of cats, which is good for both the parasite and the cat. The cat gets an easy meal, while the parasite gets into the cat's intestinal system, the only place it can sexually reproduce and complete its cycle of infection.

Credit: Wendy Ingram, UC Berkeley

Infected mice lose their fear of cats, which is good for both cats and the parasite, because the cat gets an easy meal and the parasite gets into the cat's intestinal track, the only place it can sexually reproduce and continue its cycle of infection.

New research by graduate student Wendy Ingram at the University of California, Berkeley, reveals a scary twist to this scenario: the parasite's effect seem to be permanent. The fearless behavior in mice persists long after the mouse recovers from the flu-like symptoms of toxoplasmosis, and for months after the parasitic infection is cleared from the body, according to research published today (Sept. 18) in the journal PLOS ONE.

"Even when the parasite is cleared and it's no longer in the brains of the animals, some kind of permanent long-term behavior change has occurred, even though we don't know what the actual mechanism is," Ingram said. She speculated that the parasite could damage the smell center of the brain so that the odor of cat urine can't be detected. The parasite could also directly alter neurons involved in memory and learning, or it could trigger a damaging host response, as in many human autoimmune diseases.

Ingram became interested in the protozoan parasite, Toxoplasma gondii, after reading about its behavior-altering effects in mice and rats and possible implications for its common host, the domesticated cat, and even humans. One-third of people around the world have been infected with Toxoplasma and probably have dormant cysts in their brains. Kept in check by the body's immune system, these cysts sometimes revive in immune-compromised people, leading to death, and some preliminary studies suggest that chronic infection may be linked to schizophrenia or suicidal behavior.

Pregnant women are already warned to steer clear of kitty litter, since the parasite is passed through cat feces and can cause blindness or death in the fetus. One main source of spread is undercooked pork, Ingram said.

With the help of Michael Eisen and Ellen Robey, UC Berkeley professors of molecular and cell biology, Ingram set out three years ago to discover how Toxoplasma affects mice's hard-wired fear of cats. She tested mice by seeing whether they avoided bobcat urine, which is normal behavior, versus rabbit urine, to which mice don't react. While earlier studies showed that mice lose their fear of bobcat urine for a few weeks after infection, Ingram showed that the three most common strains of Toxoplasma gondii make mice less fearful of cats for at least four months.

Using a genetically altered strain of Toxoplasma that is not able to form cysts and thus is unable to cause chronic infections in the brain, she demonstrated that the effect persisted for four months even after the mice completely cleared the microbe from their bodies. She is now looking at how the mouse immune system attacks the parasite to see whether the host's response to the infection is the culprit.

"This would seem to refute – or at least make less likely – models in which the behavior effects are the result of direct physical action of parasites on specific parts of the brain," Eisen wrote in a blog post about the research.

"The idea that this parasite knows more about our brains than we do, and has the ability to exert desired change in complicated rodent behavior, is absolutely fascinating," Ingram said. "Toxoplasma has done a phenomenal job of figuring out mammalian brains in order to enhance its transmission through a complicated life cycle."

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>