Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toxin detection as close as an inkjet printer

15.07.2009
If that office inkjet printer has become just another fixture, it's time to take a fresh look at it. Similar technology may soon be used to develop paper-based biosensors that can detect certain harmful toxins that can cause food poisoning or be used as bioterrorism agents.

In a paper published in the July issue of Analytical Chemistry, John Brennan and his research team at McMaster University, working with the Sentinel Bioactive Paper Network, describe a method for printing a toxin-detecting biosensor on paper using a FujiFilm Dimatix Materials Printer.

The researchers demonstrated the concept on the detection of acetylcholinesterase (AChE) inhibitors such as paraoxon and aflatoxin B1 on paper using a "lateral flow" sensing approach similar to that used in a home pregnancy test strip.

The process involves formulating an ink like the one found in computer printer cartridges but with special additives to make the ink biocompatible. An ink comprised of biocompatible silica nanoparticles is first deposited on paper, followed by a second ink containing the enzyme, and the resulting bio-ink forms a thin film of enzyme that is entrapped in the silica on paper. When the enzyme is exposed to a toxin, reporter molecules in the ink change colour in a manner that is dependent on the concentration of the toxin in the sample.

This simple and cost-effective method of adhering biochemical reagents to paper is expected to bring the concept of bioactive paper a significant step closer to commercialization. The goal for bioactive paper is to provide a rapid, portable, disposable and inexpensive way of detecting harmful substances, including toxins, pathogens and viruses, without the need for sophisticated instrumentation. The research showed that the printed enzyme retains full activity for at least two months when stored properly, suggesting that such sensor strips should have a good shelf life.

Portable bio-sensing papers are expected to be extremely useful in monitoring environmental and food-based toxins, as well as in remote settings in less industrialized countries where simple bioassays are essential for the first stages of detecting disease.

Applications for bioactive paper also include clinical applications in neuroscience, drug assessment, and pharmaceutical development.

Gene Nakonechny | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>