Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toxic proteins cause neurodegeneration in motor neuron disease and dementia

08.08.2014

Recent findings in basic biomedical research might pave the way towards novel therapies

Scientists at the Max Planck Institute for Biology of Ageing in Cologne and University College London have now unearthed the way in which a specific genetic mutation leads to neuronal damage in two serious afflictions, that might even occur at once in a single person: Until now, it has been unknown what causes amyotrophic lateral sclerosis and frontotemporal dementia.


In the fruit fly Drosophila melanogaster, scientists can study very well how nerve cells are damaged: brain of an adult fly (glial cells are stained green, cell nuclei purple).

Image courtesy of Dr. Teresa Niccoli, University College London, UK

Amyotrophic lateral sclerosis is a devastating type of motor neuron disease that causes rapid weakening of muscles and death. Frontotemporal dementia is the second most common cause of dementia in people under 65. It causes distressing symptoms, including changes in personality and behaviour and problems with language and thinking.

The DNA of affected patients contains a mutation: There are thousands of repeats of a specific short segment of genetic material, whereas in unaffected persons, there are only up to thirty copies of this segment. This specific genetic alteration is the cause of illness in around eight percent of patients with this type of motor neuron disease or dementia. Eight percent is a relatively high proportion. For instance, less than one percent of the causes in Alzheimer’s disease are genetic.

Researchers at the Max Planck Institute for Biology of Ageing, the Institute of Neurology and Institute for Healthy Ageing at University College London have now discovered that the repeats in the mutant gene cause neurodegeneration by making toxic proteins.

Fruitflies can undergo neurodegeneration in a similar way to humans

Previously it was thought that the problem could be a consequence of disruption of the gene by the inserted repeats. Another theory was that the repeats produce a different type of toxic RNA molecule. It now turns out that the repeats in the mutant gene can produce a variety of proteins and that two of these are extremely toxic to nerve cells. Both are highly enriched in arginine, an amino acid.

To pinpoint the role of the toxic proteins, the researchers produced artificial repeat segments that could produce potentially toxic RNA and protein or only toxic RNA or only protein. They then introduced them into the nerve cells of fruit flies, which can undergo neurodegeneration in a similar way to humans. Repeat segments that made both RNA and protein caused striking neurodegeneration and reduced the lifespan of the flies, showing that they are a good organism in which to study these diseases. Interestingly, the protein-only repeat segments caused just as bad a neurodegeneration. In contrast, the RNA-only segments were harmless, pinpointing the role of toxic proteins in these diseases. The proteins that contained arginine were the most toxic.

These findings have uncovered a new toxic role for arginine-containing proteins in motor neuron disease and dementia, which helps in the development of drugs to fight these serious afflictions.

Original publication:
C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins.
Sarah Mizielinska, Sebastian Grönke, Teresa Niccoli, Charlotte E. Ridler, Emma L. Clayton, Anny Devoy, Thomas Moens, Frances E. Norona, Ione O.C. Woollacott, Julian Pietrzyk, Karen Cleverley, Andrew J. Nicoll, Stuart Pickering-Brown, Jacqueline Dols, Melissa Cabecinha, Oliver Hendrich, Pietro Fratta, Elizabeth M.C. Fisher, Linda Partridge, and Adrian M. Isaacs.
Science Express, August 7, 2014.

Weitere Informationen:

http://www.age.mpg.de

Sabine Dzuck | Max-Planck-Institut

Further reports about: Biology Max-Planck-Institut RNA dementia diseases flies humans proteins sclerosis segments toxic type

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>