Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toxic molecule may help birds "see" north and south

23.06.2009
Researchers at the University of Illinois report that a toxic molecule known to damage cells and cause disease may also play a pivotal role in bird migration. The molecule, superoxide, is proposed as a key player in the mysterious process that allows birds to “see” Earth’s magnetic field.

Changes in the electromagnetic field, such as those experienced by a bird changing direction in flight, appear to alter a biochemical compass in the eye, allowing the bird to see how its direction corresponds to north or south.

The discovery, reported this month in Biophysical Journal, occurred as a result of a “mistake” made by a collaborator, said principal investigator Klaus Schulten, who holds the Swanlund Chair in Physics at Illinois and directs the theoretical and computational biophysics group at the Beckman Institute for Advanced Science and Technology. His postdoctoral collaborator, Ilia Solov’yov, of the Frankfurt Institute for Advanced Studies, did not know that superoxide was toxic, seeing it instead as an ideal reaction partner in a biochemical process involving the protein cryptochrome in a bird’s eye.

Cryptochrome is a blue-light photoreceptor found in plants and in the eyes of birds and other animals. Schulten was the first to propose (in 2000) that this protein was a key component of birds’ geomagnetic sense, a proposal that was later corroborated by experimental evidence. He made this prediction after he and his colleagues discovered that magnetic fields can influence chemical reactions if the reactions occur quickly enough to be governed by pure quantum mechanics.

“Prior to our work, it was thought that this was impossible because magnetic fields interact so weakly with molecules,” he said. Such chemical reactions involve electron transfers, Schulten said, “which result in freely tumbling spins of electrons. These spins behave like an axial compass.”

Changes in the electromagnetic field, such as those experienced by a bird changing direction in flight, appear to alter this biochemical compass in the eye, allowing the bird to see how its direction corresponds to north or south.

“Other researchers had found that cryptochrome, acting through its own molecular spins, recruits a reaction partner that operates at so-called zero spin. They suggested that molecular oxygen is that partner,” Schulten said. “We propose that the reaction partner is not the benign oxygen molecule that we all breathe, but its close cousin, superoxide, a negatively charged oxygen molecule.”

When Solov’yov showed that superoxide would work well as a reaction partner, Schulten was at first dismissive.

“But then I realized that the toxicity of superoxide was actually crucial to its role,” he said. The body has many mechanisms for reducing concentrations of superoxide to prevent its damaging effects, Schulten said. But this gives an advantage, since the molecule must be present at low concentrations – but not too low – “to make the biochemical compass work effectively,” he said.

Although known primarily as an agent of aging and cellular damage, superoxide recently has been recognized for its role in cellular signaling.

However, its toxicity may also explain why humans do not have the same ability to see Earth’s electromagnetic field, Schulten said.

“Our bodies try to play it safe,” he said. “It might be that human evolution chose longevity over orientational ability.”

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>