Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toxic molecule may help birds "see" north and south

23.06.2009
Researchers at the University of Illinois report that a toxic molecule known to damage cells and cause disease may also play a pivotal role in bird migration. The molecule, superoxide, is proposed as a key player in the mysterious process that allows birds to “see” Earth’s magnetic field.

Changes in the electromagnetic field, such as those experienced by a bird changing direction in flight, appear to alter a biochemical compass in the eye, allowing the bird to see how its direction corresponds to north or south.

The discovery, reported this month in Biophysical Journal, occurred as a result of a “mistake” made by a collaborator, said principal investigator Klaus Schulten, who holds the Swanlund Chair in Physics at Illinois and directs the theoretical and computational biophysics group at the Beckman Institute for Advanced Science and Technology. His postdoctoral collaborator, Ilia Solov’yov, of the Frankfurt Institute for Advanced Studies, did not know that superoxide was toxic, seeing it instead as an ideal reaction partner in a biochemical process involving the protein cryptochrome in a bird’s eye.

Cryptochrome is a blue-light photoreceptor found in plants and in the eyes of birds and other animals. Schulten was the first to propose (in 2000) that this protein was a key component of birds’ geomagnetic sense, a proposal that was later corroborated by experimental evidence. He made this prediction after he and his colleagues discovered that magnetic fields can influence chemical reactions if the reactions occur quickly enough to be governed by pure quantum mechanics.

“Prior to our work, it was thought that this was impossible because magnetic fields interact so weakly with molecules,” he said. Such chemical reactions involve electron transfers, Schulten said, “which result in freely tumbling spins of electrons. These spins behave like an axial compass.”

Changes in the electromagnetic field, such as those experienced by a bird changing direction in flight, appear to alter this biochemical compass in the eye, allowing the bird to see how its direction corresponds to north or south.

“Other researchers had found that cryptochrome, acting through its own molecular spins, recruits a reaction partner that operates at so-called zero spin. They suggested that molecular oxygen is that partner,” Schulten said. “We propose that the reaction partner is not the benign oxygen molecule that we all breathe, but its close cousin, superoxide, a negatively charged oxygen molecule.”

When Solov’yov showed that superoxide would work well as a reaction partner, Schulten was at first dismissive.

“But then I realized that the toxicity of superoxide was actually crucial to its role,” he said. The body has many mechanisms for reducing concentrations of superoxide to prevent its damaging effects, Schulten said. But this gives an advantage, since the molecule must be present at low concentrations – but not too low – “to make the biochemical compass work effectively,” he said.

Although known primarily as an agent of aging and cellular damage, superoxide recently has been recognized for its role in cellular signaling.

However, its toxicity may also explain why humans do not have the same ability to see Earth’s electromagnetic field, Schulten said.

“Our bodies try to play it safe,” he said. “It might be that human evolution chose longevity over orientational ability.”

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>