Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tough yet stiff deer antler is materials scientist's dream

Prized for their impressive antlers, red deer have been caught in the hunters' sights for generations. But a deer's antlers are much more than decorative.

They are lethal weapons that stags crash together when duelling. John Currey, from The University of York, UK, has been intrigued by the mechanical properties of bone for over half a century and has become fascinated by the mechanical properties of antler through a long-standing collaboration with Tomas Landete-Castillejos at the Universidad de Castilla-La Mancha.

'Antlers look as if they are dry,' says Currey, 'but no one knew if they really are dry when used in contests'. Curious to find out whether red deer antlers are used wet or dry when duelling, and how this affects the antlers' mechanical properties, Currey headed south to La Mancha to test the mechanical properties of red deer antlers and publishes the discovery that dry antler is stiff and tough on 27 November 2009 in the Journal of Experimental Biology at

But before the team could begin testing the antler's strength, they needed to find out how dry the bones were. Collecting freshly cut antlers from the university farm and a local game estate just after stags had shed the antler's protective velvet, Currey, Landete-Castillejos, José Estevez and their colleagues weighed the antlers each week to find out how much they dried. Amazingly, over the first 2 weeks, the antlers lost a colossal 8% of their weight, compared with 1% weight loss if they were cut at other times of the year. Eventually the weight loss stabilised and the antler's humidity was in balance with that of the surrounding air. It was clear that the antlers were dry when the stags began duelling.

... more about:
»lethal weapons »red deer »weight loss

But how did this water loss affect the bone's material properties in comparison with those of normal bones, which function internally and are always wet? Would the dry antler make a better weapon than wet bone?

The team prepared 40 mm long blocks of dry antler and wet deer femur and measured the amount of force needed to bend the blocks to find out how flexible the materials were. Even though most bones are relatively brittle and inflexible when dry, the team found that the dry antlers are almost as stiff as wet bone: which is ideal for weapons that have to survive a lengthy pushing contest after the initial clash.

But how 'tough' was the antler? How much energy could it absorb in the initial crash? Applying a force to the middle of the blocks of bone and gently increasing it until the bone broke, the team plotted a curve of the bending force against the amount that the bone bent. Calculating the amount of energy that the antler could absorb before shattering, Currey found that the tissue was incredibly tough: 2.4 times tougher than normal wet bone. And when Currey measured the amount of energy that the dry antler could absorb in an impact, he was surprised and pleased to see that it could survive impacts 6 times greater than the impacts that shattered wet femur. The dry antler was tougher than wet bone and ideally suited to survive the stags' initial clash.

So dry deer antlers are simultaneously stiff, yet tough, making them perfectly suited to their role as a weapon. And the deer seem to have solved a problem that has puzzled engineers for decades. 'It is very difficult to make anything that is both stiff and tough,' says Currey, but it seems that duelling deer solved the problem eons ago.

Kathryn Knight | EurekAlert!
Further information:

Further reports about: lethal weapons red deer weight loss

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>