Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toolkit for microbiota research

03.12.2015

Researchers cultivate the majority of bacteria in the laboratory that colonize Arabidopsis plants in nature

No organism is an island - a fact that also applies to plants. Healthy plants host complex microbial communities comprising over 100 bacterial species which presumably play important roles in plant growth and health.

Plants allow access only to a select community of bacteria, designated the plant microbiota, that originate mainly from a vast diversity of microorganisms present in natural soil. Researchers from the Max Planck Institute for Plant Breeding Research in Cologne together with scientists in Switzerland cultivated over half of the bacteria found on and in the leaves and roots of the model plant Arabidopsis thaliana (thale cress).

Using this representative collection of over 400 bacterial strains in pure culture, the researchers can now reconstitute any microbial community in the leaves and roots of Arabidopsis under laboratory settings. This development marks the beginning of a new era in plant-microbe ecology using defined microbiota.

One aim of the relatively young field of plant microbiota research has been to generate an inventory of plant-associated microbial communities. Paul Schulze-Lefert from the Max Planck Institute for Plant Breeding Research in Cologne and Julia Vorholt from the ETH Zurich and their colleagues have now taken another important step towards this goal.

The team cultivated far in excess of half of the bacterial species colonizing leaves and roots of  Arabidopsis plants grown in nature and established a collection of bacterial strains with which the leaf and root microbiota can be reconstituted on germ-free plants.

The astonishing similarity between the bacterial communities produced in the laboratory and those found in nature opens the door to microbiota reconstitution biology. The use of such defined communities enables for the first time controlled perturbation of the microbiota under controlled environmental conditions without the vagaries that are inevitable in nature due to environmental fluctuations.

The two scientists cultivated up to 65 percent of the bacterial species found in the root microbiota and up to 54 percent of the species of the leaf microbiota as pure cultures. Yet according to the received wisdom in microbial ecology states, it is not possible to cultivate more than one percent of the bacteria from natural environmental samples.

“This is simply incorrect,” says Schulze-Lefert. “We know from our bacterial cultivation efforts that our core culture collection contains the majority of the bacterial species that is present in the communities and provides a very good representation of the taxonomic diversity of the natural leaf and root microbiota. The collection may not be perfect but it provides a very good starting point for microbiota reconstruction experiments,” he adds.

Upon closer inspection of bacterial species profiles, Schulze-Lefert and Vorholt observed a considerable similarity between the microbial communities found in the Arabidopsis leaf and root. “Almost half of the species are identical,” explains Schulze-Lefert. “Despite the fact that the samples for the root microbiota were collected in Cologne and those for the leaf microbiota in Zurich and Tübingen, if you consider the root and leaf microbiota from a higher taxonomic perspective, that is from the level of the bacterial families and classes present, there are no differences at all. So the microbiota are highly robust in different natural environments,” he adds.

The Research Groups determined the genomes of 432 bacterial isolates from their collection by DNA sequencing and compared them. “Not only do we have pure cultures for the reconstitution experiments, we also know the complete genome of each community member in our core collection,” says Schulze-Lefert. The scientists were then able to compare the biochemical capabilities of the leaf and root microbiota.

To do this they combined the genes from the genomes with a computer into functional networks. The similarity of the profiles of bacterial species present in the leaf and root communities corresponds to an extensive overlap in functional capabilities encoded by the corresponding genomes. Such experiments are possible today because the biochemical functions of many genes are known, as are the cellular networks and metabolic reactions in which they are involved.

Due to the extensive overlap of genome-encoded functional capabilities and the similarities of the species profiles, Vorholt and Schulze-Lefert concluded that the majority of the leaf- and root-associated bacteria originate from the extraordinarily diverse soil microbiota. This suggests that a plant’s leaves are colonized mainly by soil-derived bacteria via the root as stopover site.

Nevertheless, it is also possible to observe functional differences encoded by the genomes of leaf- and root-associated bacteria. These relate to apparent differences in the ecological niches of the leaf and root. This can be construed, for example, from the bacterial genes needed to feed on complex carbohydrates that are present on leaves and roots; the root microbiota needs fewer of these, as only roots exude large amounts of simple sugars.

The scientists also carried out microbiota reconstitution experiments. To do this, they used a closed artificial environment with sterile clay as a soil substitute, a sterile liquid nutrient medium without organic carbon, and germ-free Arabidopsis seeds. Cultivation was carried out in transparent sterile chambers which were inoculated with defined bacterial communities at different time points. “Although the system is highly artificial, the communities that populate the leaves and roots are remarkably similar to the communities on plants grown in nature,” says Schulze-Lefert.

Even if the defined microbiota inoculum was added to the clay or on leaves alone, the leaf or root microbiota were able to populate not only their corresponding plant organ but, to a considerable extent, also the remotely located leaf and root organ. If the leaf and root microbiota were mixed and then applied to the clay, the root microbiota outcompeted the leaf-derived bacterial community in the root. A corresponding competitive advantage exists for the leaf microbiota in leaves. This points to a specialization of bacterial communities to leaf and root ecological niches despite the extensive functional overlap between the leaf and root microbiota.

The scientists are at an early stage in these microbiota reconstitution experiments. They can now leave out individual bacterial species or entire families from the defined microbiota and test these under different environmental stress conditions. They expect that such controlled perturbation experiments will provide molecular insights into how the bacterial communities mobilize and supply soil nutrients for plant growth and how the microbiota protects its host against microbial pathogens.

Contact

Prof. Dr. Paul Schulze-Lefert

Phone:+49 221 5062-351Fax:+49 221 5062-353

Original publication

Yang Bai et al.
Functional overlap of the Arabidopsis leaf and root microbiota

Prof. Dr. Paul Schulze-Lefert | Max Planck Institute for Plant Breeding Research, Köln
Further information:
http://www.mpg.de/9765276/arabidopsis-microbiomes

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>