Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Tool Gives Researchers a Glimpse of Biomolecules in Motion

15.01.2009
Using nanoscale 'test tubes' NIST researchers have demonstrated how terahertz spectroscopy can reveal the dynamic behavior of biomolecules like amino acids and proteins in water, important data for understanding their complex molecular behavior.

The ability of biomolecules to flex and bend is important for the performance of many functions within living cells. However, researchers interested in how biomolecules such as amino acids and proteins function have long had to make inferences from a series of X-ray-like “still pictures” of pure crystalline samples.

Now, using a new technique based on terahertz (THz) spectroscopy, scientists at the National Institute of Standards and Technology (NIST) have recently taken the first step toward revealing the hidden machinations of biomolecules in water.*

With wavelengths that range from 1 millimeter to 25 micrometers, terahertz radiation falls between the infrared and microwave spectral regions. Researchers can determine how molecules are moving by passing terahertz radiation through a sample and measuring which wavelengths are absorbed. Unfortunately, room temperature water, the medium in which biological molecules typically are studied, absorbs nearly all of the terahertz radiation, limiting the utility of terahertz spectroscopy for probing biomolecular function.

To avoid the water problem, the NIST team needed to find a way to provide a simple but realistic environment for the biomolecules that contained the least amount of water possible. NIST researcher Ted Heilweil, National Research Council postdoctoral fellow Catherine Cooksey and NIST Summer Undergraduate Research Fellow Ben Greer from Carnegie Mellon University found their solution in the form of nanoscale droplets made of soap-like molecules called micelles.

Using the micelles as tiny test tubes, the team filled the hollow molecules with a small sample of water and the amino acid L-proline, a protein building block. Measurements validated their hypothesis that the micelles would provide an aqueous environment that allows the amino acid to flex and bend while limiting the absorption of the terahertz radiation by water. The terahertz measurements on this simple biomolecule compared well with expectations from other studies, further validating the technique.

According to Heilweil, this study is an important first step toward using terahertz radiation for studying biomolecules. More ambitious measurements on larger molecules such as small peptides, proteins, and DNA fragments will be more challenging, but he says it may be possible in the near future.

“If we can get larger molecules in [the micelles], we can get a much better idea of how living molecules function,” Heilweil said. “This will let us see the basic, most fundamental building blocks of life as they move, which is very exciting.”

* C. Cooksey, B. J. Greer and E. J. Heilweil. Terahertz spectroscopy of l-proline in reverse aqueous micelles. Chemical Physics Letters. Available online Nov. 21, 2008.

Mark Esser | Newswise Science News
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>