Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool offers unprecedented access for root studies

21.12.2011
Plant roots are fascinating plant organs – they not only anchor the plant, but are also the world's most efficient mining companies. Roots live in darkness and direct the activities of the other organs, as well as interact with the surrounding environment. Charles Darwin posited in The Power of Movement of Plants that the root system acts as a plant's brain.

Due to the difficulty of accessing root tissue in intact live plants, research of these hidden parts has always lagged behind research on the more visible parts of plants. But now: a new technology--developed jointly by Carnegie and Stanford University--could revolutionize root research. The findings will be published in the large-scale biology section of the December issue of The Plant Cell.

Understanding roots is crucial to the study of plant physiology because they serve as the interface between a plant and the soil--being solely responsible for taking up water and essential mineral nutrients. Roots must respond quickly to various environmental conditions such as water availability (for example, when being soaked by rain after a period of drought). They must find and exploit nutrients; they must respond to salinization and acidification of the soil; and they must integrate diverse signals such as light and gravity. All of these aspects are very difficult to analyze because of a root's inaccessibility in the soil.

The research team's efforts could revolutionize the entire field of root studies. The team is comprised of a group of plant scientists, including the paper's lead author, Guido Grossmann, along with his Carnegie colleagues (Woei-Jiun Guo, David Ehrhardt and Wolf Frommer) and a group of chemical engineers from Stanford University and the Howard Hughes Medical Institute, (Rene Sit, Stephen Quake and Matthias Meier).

The new technology, called the RootChip, allowed the research team to study roots of eight individual seedlings at the same time, and to alter their growth environment simultaneously or independently and with extraordinary precision. Optical sensors, developed and inserted into the root tissue by Frommer's team, allowed the researchers to examine how the roots responded to changes in nutrient supply levels in real time.

"This new tool provides a major advance for studying root biology at the cellular and subcellular level," said Wolf Frommer, director of Carnegie's plant biology department. "The growth conditions can be freely varied over several days, allowing us to monitor actual growth and development of roots and root hairs and using our optical biosensors to study nutrient acquisition and carbon sequestration in real time."

The RootChip was capable of monitoring a root's response to changing levels of the sugar glucose in the surrounding environment. Root growth slowed down when the leaves were not exposed to light, as predicted, because the leaf's photosynthesis is required to supply the energy for root growth. The RootChip also revealed the long-suspected fact that galactose, a sugar highly similar to glucose, is toxic to roots and inhibits their growth and function.

The RootChip is a generic tool and can be altered to test any aspect of root physiology that can be analyzed visually. It can easily be modified to study more than 30 seedlings at the same time and can be expanded for use with plants used to make biofuels, such as Brachypodium and foxtail millet.

This research was supported by grants from NSF and DOE, as well as an EMBO long-term fellowship and the Alexander V. Humboldt Society.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Wolf B. Frommer | EurekAlert!
Further information:
http://www.carnegiescience.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>