Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool offers unprecedented access for root studies

21.12.2011
Plant roots are fascinating plant organs – they not only anchor the plant, but are also the world's most efficient mining companies. Roots live in darkness and direct the activities of the other organs, as well as interact with the surrounding environment. Charles Darwin posited in The Power of Movement of Plants that the root system acts as a plant's brain.

Due to the difficulty of accessing root tissue in intact live plants, research of these hidden parts has always lagged behind research on the more visible parts of plants. But now: a new technology--developed jointly by Carnegie and Stanford University--could revolutionize root research. The findings will be published in the large-scale biology section of the December issue of The Plant Cell.

Understanding roots is crucial to the study of plant physiology because they serve as the interface between a plant and the soil--being solely responsible for taking up water and essential mineral nutrients. Roots must respond quickly to various environmental conditions such as water availability (for example, when being soaked by rain after a period of drought). They must find and exploit nutrients; they must respond to salinization and acidification of the soil; and they must integrate diverse signals such as light and gravity. All of these aspects are very difficult to analyze because of a root's inaccessibility in the soil.

The research team's efforts could revolutionize the entire field of root studies. The team is comprised of a group of plant scientists, including the paper's lead author, Guido Grossmann, along with his Carnegie colleagues (Woei-Jiun Guo, David Ehrhardt and Wolf Frommer) and a group of chemical engineers from Stanford University and the Howard Hughes Medical Institute, (Rene Sit, Stephen Quake and Matthias Meier).

The new technology, called the RootChip, allowed the research team to study roots of eight individual seedlings at the same time, and to alter their growth environment simultaneously or independently and with extraordinary precision. Optical sensors, developed and inserted into the root tissue by Frommer's team, allowed the researchers to examine how the roots responded to changes in nutrient supply levels in real time.

"This new tool provides a major advance for studying root biology at the cellular and subcellular level," said Wolf Frommer, director of Carnegie's plant biology department. "The growth conditions can be freely varied over several days, allowing us to monitor actual growth and development of roots and root hairs and using our optical biosensors to study nutrient acquisition and carbon sequestration in real time."

The RootChip was capable of monitoring a root's response to changing levels of the sugar glucose in the surrounding environment. Root growth slowed down when the leaves were not exposed to light, as predicted, because the leaf's photosynthesis is required to supply the energy for root growth. The RootChip also revealed the long-suspected fact that galactose, a sugar highly similar to glucose, is toxic to roots and inhibits their growth and function.

The RootChip is a generic tool and can be altered to test any aspect of root physiology that can be analyzed visually. It can easily be modified to study more than 30 seedlings at the same time and can be expanded for use with plants used to make biofuels, such as Brachypodium and foxtail millet.

This research was supported by grants from NSF and DOE, as well as an EMBO long-term fellowship and the Alexander V. Humboldt Society.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Wolf B. Frommer | EurekAlert!
Further information:
http://www.carnegiescience.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>