Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New tool offers unprecedented access for root studies

Plant roots are fascinating plant organs – they not only anchor the plant, but are also the world's most efficient mining companies. Roots live in darkness and direct the activities of the other organs, as well as interact with the surrounding environment. Charles Darwin posited in The Power of Movement of Plants that the root system acts as a plant's brain.

Due to the difficulty of accessing root tissue in intact live plants, research of these hidden parts has always lagged behind research on the more visible parts of plants. But now: a new technology--developed jointly by Carnegie and Stanford University--could revolutionize root research. The findings will be published in the large-scale biology section of the December issue of The Plant Cell.

Understanding roots is crucial to the study of plant physiology because they serve as the interface between a plant and the soil--being solely responsible for taking up water and essential mineral nutrients. Roots must respond quickly to various environmental conditions such as water availability (for example, when being soaked by rain after a period of drought). They must find and exploit nutrients; they must respond to salinization and acidification of the soil; and they must integrate diverse signals such as light and gravity. All of these aspects are very difficult to analyze because of a root's inaccessibility in the soil.

The research team's efforts could revolutionize the entire field of root studies. The team is comprised of a group of plant scientists, including the paper's lead author, Guido Grossmann, along with his Carnegie colleagues (Woei-Jiun Guo, David Ehrhardt and Wolf Frommer) and a group of chemical engineers from Stanford University and the Howard Hughes Medical Institute, (Rene Sit, Stephen Quake and Matthias Meier).

The new technology, called the RootChip, allowed the research team to study roots of eight individual seedlings at the same time, and to alter their growth environment simultaneously or independently and with extraordinary precision. Optical sensors, developed and inserted into the root tissue by Frommer's team, allowed the researchers to examine how the roots responded to changes in nutrient supply levels in real time.

"This new tool provides a major advance for studying root biology at the cellular and subcellular level," said Wolf Frommer, director of Carnegie's plant biology department. "The growth conditions can be freely varied over several days, allowing us to monitor actual growth and development of roots and root hairs and using our optical biosensors to study nutrient acquisition and carbon sequestration in real time."

The RootChip was capable of monitoring a root's response to changing levels of the sugar glucose in the surrounding environment. Root growth slowed down when the leaves were not exposed to light, as predicted, because the leaf's photosynthesis is required to supply the energy for root growth. The RootChip also revealed the long-suspected fact that galactose, a sugar highly similar to glucose, is toxic to roots and inhibits their growth and function.

The RootChip is a generic tool and can be altered to test any aspect of root physiology that can be analyzed visually. It can easily be modified to study more than 30 seedlings at the same time and can be expanded for use with plants used to make biofuels, such as Brachypodium and foxtail millet.

This research was supported by grants from NSF and DOE, as well as an EMBO long-term fellowship and the Alexander V. Humboldt Society.

The Carnegie Institution for Science ( is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Wolf B. Frommer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>