Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool in the fight against tuberculosis

08.10.2010
Algorithm that integrates genomic and metabolic data enables cell-scale simulations and ultimately, biological strain design

Researchers at the Institute for Genomic Biology at the University of Illinois have developed a way to harness the prodigious quantities of both genomic and metabolic data being generated with high-throughput genomics and other techniques.

They have developed an algorithm that automatically integrates both data sets. The model, called probabilistic regulation of metabolism (PROM), enables researchers to perturb a given regulatory gene or metabolic process and see how that affects the entire network.

"PROM provides a platform for studying the behavior of networks in a wide range of different conditions," says principal investigator Nathan Price, an associate professor of chemical and biomolecular engineering at Illinois.

Using this model the researchers have created the first genome-scale, regulatory-metabolic network of Mycobacterium tuberculosis. Their results were published online by PNAS on September 27.

Using E. Coli as a benchmark, Price and graduate student Sriram Chandrasekaran showed that PROM was more accurate and comprehensive than the previous model for E. Coli, which had been done by hand and published in 2004.

After using E. Coli as a proof of principle, they targeted tuberculosis, a bacterium that has not been as thoroughly studied as E. Coli. Price and Chandrasekaran had less than half the amount of data then they had for E. Coli and were still able to create a model that predicted knockout phenotypes 95 percent of the time, says Price.

Price and Chandrasekaran built the algorithm using microarray data, transcription-factor interactions that regulate metabolic reactions, and knock-out phenotypes. The method is both accurate and fast. PROM may prove particularly helpful to tuberculosis researchers because, although when tuberculosis is growing it can be killed, the real challenge is to target the bacterium during its dormant or quiescent stage. PROM may enable researchers to identify and target the pathways keeping the cells alive during dormancy.

PROM also represents a major advance because it successfully integrates the statistically derived transcriptional regulatory network with a biochemically derived metabolic network.

"That is the new part," says Price. "People have created regulatory models and metabolic models. But there has been nothing before that could combine them in this automated fashion. It is difficult to get these two to talk to each other in the right way."

Price and Chandrasekaran created an algorithm that makes use of probability. Earlier models used a Boolean or a binary approach, in which a gene is either on or off. PROM can account for a gene or enzyme that can also be part way on or part way off, so it acts more like a rheostat than a toggle switch.

"People were stuck here for a long time. That's why PROM is such a nice method. It's sort of Boolean but it's probabilistic Boolean. It does allow us to have a continuous variation," says Price.

"These models can guide genome-scale synthetic biology," he adds. "And understanding how the networks are put together lays the foundation for us to design genomes that encode for networks that behave in the way we want them to, such as engineering microbes to convert environmental toxins into biofuels, for example."

Melissa Edwards | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>