Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool in the fight against tuberculosis

08.10.2010
Algorithm that integrates genomic and metabolic data enables cell-scale simulations and ultimately, biological strain design

Researchers at the Institute for Genomic Biology at the University of Illinois have developed a way to harness the prodigious quantities of both genomic and metabolic data being generated with high-throughput genomics and other techniques.

They have developed an algorithm that automatically integrates both data sets. The model, called probabilistic regulation of metabolism (PROM), enables researchers to perturb a given regulatory gene or metabolic process and see how that affects the entire network.

"PROM provides a platform for studying the behavior of networks in a wide range of different conditions," says principal investigator Nathan Price, an associate professor of chemical and biomolecular engineering at Illinois.

Using this model the researchers have created the first genome-scale, regulatory-metabolic network of Mycobacterium tuberculosis. Their results were published online by PNAS on September 27.

Using E. Coli as a benchmark, Price and graduate student Sriram Chandrasekaran showed that PROM was more accurate and comprehensive than the previous model for E. Coli, which had been done by hand and published in 2004.

After using E. Coli as a proof of principle, they targeted tuberculosis, a bacterium that has not been as thoroughly studied as E. Coli. Price and Chandrasekaran had less than half the amount of data then they had for E. Coli and were still able to create a model that predicted knockout phenotypes 95 percent of the time, says Price.

Price and Chandrasekaran built the algorithm using microarray data, transcription-factor interactions that regulate metabolic reactions, and knock-out phenotypes. The method is both accurate and fast. PROM may prove particularly helpful to tuberculosis researchers because, although when tuberculosis is growing it can be killed, the real challenge is to target the bacterium during its dormant or quiescent stage. PROM may enable researchers to identify and target the pathways keeping the cells alive during dormancy.

PROM also represents a major advance because it successfully integrates the statistically derived transcriptional regulatory network with a biochemically derived metabolic network.

"That is the new part," says Price. "People have created regulatory models and metabolic models. But there has been nothing before that could combine them in this automated fashion. It is difficult to get these two to talk to each other in the right way."

Price and Chandrasekaran created an algorithm that makes use of probability. Earlier models used a Boolean or a binary approach, in which a gene is either on or off. PROM can account for a gene or enzyme that can also be part way on or part way off, so it acts more like a rheostat than a toggle switch.

"People were stuck here for a long time. That's why PROM is such a nice method. It's sort of Boolean but it's probabilistic Boolean. It does allow us to have a continuous variation," says Price.

"These models can guide genome-scale synthetic biology," he adds. "And understanding how the networks are put together lays the foundation for us to design genomes that encode for networks that behave in the way we want them to, such as engineering microbes to convert environmental toxins into biofuels, for example."

Melissa Edwards | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>