Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tongue makes the difference in how fish and mammals chew

28.06.2011
New research from Brown University shows that fish and mammals chew differently. Fish use tongue muscles to thrust food backward, while mammals use tongue muscles to position food for grinding. The evolutionary divergence is believed to have occurred with amphibians, though further research is needed to identify which species and when. Results are published in Integrative and Comparative Biology.

Evolution has made its marks — large and small — in innumerable patterns of life. New research from Brown University shows chewing has evolved too.

Researchers looked at muscles that control the movement of the jaw and tongue in fish and in mammals. They learned that fish use tongue muscles primarily to funnel the food farther into the mouth for processing, as if the morsel were an object in an assembly line. Mammals use tongue muscles to position the food, so that jaw muscles can best use teeth to chew the food.

The difference in chewing shows that animals have changed the way they chew and digest their food and that evolution must have played a role.

“It’s pretty clear that all of these animals chew, but the involvement of the tongue in chewing differs,” said Nicolai Konow, a postdoctoral researcher at Brown and the lead author on the study, published in the journal of Integrative and Comparative Biology. “And that brings up the question of what the muscles associated with the tongue and the jaw are doing.”

In 2008 and last year, Konow and colleagues published papers showing the chewing technique of bowfin, pike, and fish with tiny teeth on their tongues such as salmon and osteoglossomorphs (fish with bony tongues). In some of these species, the researchers showed that chewing begins with the tongue positioned in the upper mouth. Then the fish fires the muscle, called the sternohyoid, downward, retracting the tongue inward, before moving it forward again, and upward, to its original position in the upper mouth. With the fish facing left, the chewing cycle looks like an ellipse tilted at an angle, with the tongue moving in a clockwise direction.

The finding was bolstered by earlier research by other scientists that showed the same chewing pattern in other fish, including bichir (a freshwater fish in Africa), gar, and, importantly, lungfish, which is believed to represent an early stage in the transition of some species from exclusively water- to land-dwelling.

In this paper, Konow and his team studied how the muscles of three mammals acted during chewing: alpacas, goats, and pigs. They outfitted each with electrodes planted in the jaw and tongue muscles to pinpoint the activity of each set of muscles during chewing. The analysis indicated that the animals’ tongues thrust forward, and upward, as they began to chew and then fell back, or retracted, to their original position. With the animals facing left, the tongue traces an ellipse in a counter-clockwise direction for each cycle.

The distinction between fish and mammal chewing is likely there for a reason, Konow said. With fish, the tongue’s function is to transport the food quickly into and through the mouth, where, in many species, an extra set (or sets) of jaws will grind the food. In addition, the tongue moves oxygenated water through the mouth to the gills, helping the fish to breathe.

“That’s why you want to constantly have that inward movement with the tongue,” Konow explained.

Mammals, on the other hand, use their tongues to set the food in the right spot in the mouth to maximize chewing. But even among closely related species, there is a surprising difference: Herbivores, such as alpacas and goats, were less coordinated during chewing than omnivores, represented by the pigs. Cud-chewing animals were not as monotonously rhythmic in their chewing as many would believe.

“It is a puzzling finding,” Konow said. “We think the herbivore needs the bolus (the soft mass of chewed food) to be in a precise place between each chew. So the tongue may be constantly moving around to make sure the bolus is in the right place between chews.”

Next came the task of figuring out where, when and with what species the divergence in chewing emerged. Previous research by Anthony Herrel, a Belgian biologist now based at the Museum National D’Histoire Naturelle in Paris, showed that lizards fire their tongues forward and upward as they begin chewing, just like mammals. The thinking is that the transition likely occurred among amphibians. That makes sense, Konow said, and he plans to look next at amphibian chewing. “They’re still locked to the water for reproduction,” he said. “But you have some that become all terrestrial. And that’s the next step on the evolutionary ladder.”

Contributing authors include Herrel; Callum Ross from the University of Chicago; Susan Williams from Ohio University; Rebecca German from Johns Hopkins University; and Christopher Sanford and Chris Gintof from Hofstra University.

The U.S. National Institutes of Health and the U.S. National Science Foundation funded the research.

Richard Lewis | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>